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Abstract 

This thesis concerns inventory-transportation tradeoffs in which a number of suppliers serve 

multiple customers, each ordering several product types. The goal is to design optimal routes to 

satisfy the customers’ demands. In the proposed approach, the products are shipped to cross-

docks from the suppliers, and several customers will be served by each route beginning at a 

cross-dock. The objective is to minimize the total cost, beginning with summing the 

transportation costs on those edges through which trips may go, times the shipment frequencies. 

The holding costs at customers, and the pipeline inventory costs on the routes, take into account 

that various products may have different carrying-cost parameters. Based on some analytical 

results, the developed model is reformulated in terms of a single set of decision variables. 

The holding cost makes the objective function highly nonlinear. In addition, transportation 

cost and pipeline inventory cost are quadratic. After linearization of the objective function, a 

column generation algorithm is proposed to solve the nonlinear mixed-integer programming 

model. The holding cost, which is the sum of a set of fractions, is linearized after objective-

function decomposition. Each of the decomposed sub-problems has only one fraction, which can 

be linearized by replacing that fraction by a new decision variable and adding some constraints 

to the formulation.  To linearize the quadratic parts of the objective function, we substitute a new 

variable for the multiplication of each pair of decision variables, and add some new constraints.  

We provide computational results for the model with a single product. All parameters are 

generated randomly. Our proposed algorithm can optimally solve some problems with up to 626 

edges. However, CPU time might be very high. For instances with 500 edges, CPU time can be 

up to 20 hours depending on the number of iterations the algorithm needs to find the optimal 

solution. Instances with up to 300 edges are solved to optimality within a CPU time of only one 

hour on a computer with 16 GB RAM and 3.40 GHz CPU.  
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Chapter 1 

Introduction 

 

1.1 Motivation and Background 

In every supply chain, there is a group of customers who demand a variety of products from a 

set of suppliers. For example, consider a series of franchise convenience stores. Those stores are 

the demand points; the suppliers provide several types of products for them. Each of these 

convenience stores should carry a certain level of inventory relative to the demand of each 

product. The total cost of the supply chain has always been a major concern. Companies place 

great emphasis on the shipping costs from suppliers to customers and the inventory carrying 

costs at the stores, hence those are the most important costs that researchers take into account.  

The shipping costs include transportation costs and the in-transit inventory carrying cost (also 

called pipeline inventory cost). Because some products need to be refrigerated during transit, 

pipeline inventory cost should be considered in addition to vehicle costs such as the fuel, driver’s 

wage and the vehicle depreciation.  
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Inventory level at the stores should be considered in light of total cost. Thus, low stock levels 

result in low carrying costs. However, to secure the demand satisfaction at the stores while 

keeping inventory levels down, the deliveries of products must become more regular. Higher 

frequencies of deliveries increase the transportation cost. Therefore, the decisions on inventory 

management and transportation strategies should be integrated. There must be a tradeoff between 

the inventory levels and the replenishment frequencies, so that the total cost of the supply chain 

is minimized. 

Various delivery strategies can have a significant influence on shipment costs. For example, 

7-Eleven Japan and Wal-Mart use cross-docking to reduce transportation costs. Shipments 

coming from different suppliers are aggregated at the cross-docks (CDs), and mixed loads are 

then delivered to individual stores. Products for different customers that are provided by the 

same supplier can be shipped to a CD and aggregated there. These strategies help the supply 

chain to dispatch near-truckload shipments most of the time, as opposed to having less-than-

truckload (LTL) ones. Therefore, if the demands are usually LTL, the shipping costs decrease 

significantly.  

Vehicle routing is another useful transportation strategy. That is especially true when most 

shipments to each customer are LTL and the suppliers are far from the customers. In this case, 

demands of a sub-set of customers are consolidated at a supplier; the vehicle visits all those 

customers, delivers their demands, and goes back to the supplier.  

1.2 Objectives 

There is much research in the areas of cross-docking, vehicle routing and inventory 

management. However, there is so far no published research that considers those three topics 
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together. We are interested in formulating and solving a model in which vehicle routing and 

cross-docking can be considered simultaneously as transportation strategies. In addition, our goal 

is to minimize the supply chain’s total inventory costs plus transportation costs. We note that 

there is no paper in the literature addressing pipeline inventory in vehicle routing problems; the 

present work takes this into account as well.  

The shipment frequencies for each route will be considered as decision variables, allowing the 

sum of demands on a route to exceed the vehicle capacity. This idea was first introduced by 

Berman and Wang (2006) for a supply chain with direct shipment strategy. However, it has not 

yet been applied to routing models.  

The remainder of the thesis is organized as follows: Chapter 2 is a literature survey on cross-

docking, vehicle routing and inventory-routing models. In Chapter 3, the problem definition and 

the model formulation are provided. Chapter 4 addresses the model reformulation and the 

solution method. In Chapter 5, we present computational results and some sensitivity analyses. 

Chapter 6 considers the conclusion of the thesis, and suggestions for future work. 
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Chapter 2  

Literature Review 

 

2.1 Vehicle Routing Problems (VRP) 

The classical VRP consists of planning optimal delivery or pick-up routes for a set of 

customers, originating from a depot. Through imposing different constraints, such as time 

windows, vehicle capacity and travel time, various problems in vehicle routing can be defined. 

We introduce some famous ones and then provide a literature review for them. 

The problem was first introduced by Dantzig and Ramser (1959) in which a gasoline truck 

delivery is to be optimized by designing routes from a bulk terminal to a large set of service 

stations supplied by the terminal. The demands for multiple products are known; the goal is to 

assign a number of stations to each truck, minimizing the total travel mileage, such that all 

demands are satisfied. They provide a linear programming formulation for the problem. They 

introduce their model as a generalization of the Traveling Salesman Problem (TSP). 
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Capacitated VRP (CVRP) is a vehicle routing problem in which the only constraint is on the 

capacity of the vehicle. CVRP is definitely harder to solve than the TSP. Instances with up to 

thousands of vertices are solvable for the TSP. However, the best algorithms can generally solve 

the CVRP for at most 100 customers (Cordeau et al. 2007). VRP with Time Windows (VRPTW) 

is another variant of the vehicle routing problem. The customers can be served only within a 

specific time interval, and the trips are to be scheduled. However, researchers have been working 

on more complex problems that are considered as “rich” VRP. Various assumptions such as 

considering multiple depots, several routes per vehicle, a variety of products, and non-identical 

vehicle types help to define the types of rich VRP. 

2.1.1 VRP Solved with Exact Algorithms 

As a literature review, we now describe some recent CVRP models solved using exact 

methods, especially column generation and branch-and-price. For a review of previous exact 

methods in CVRP,  see Laporte and Nobert (1987) and Cordeau et al. (2007). 

Mingozzi et al. (2013) present a multi-trip VRP in which their goal is to schedule several trips 

for each vehicle to minimize the total number of vehicles used in a period. This is applicable 

when the period is large enough compared to the travel times. The capacity of each vehicle is   

and the corresponding maximum driving time is  . The sum of demands of the customers on 

each route should not exceed the capacity of the vehicle. A schedule of a vehicle is defined as a 

set of routes assigned to that vehicle, such that the total travel times of those routes is less than or 

equal to  .  

Mingozzi et al. (2013) provide exact algorithms to solve the problem, and state that no exact 

algorithm has been proposed for this problem so far. They develop two set-partitioning 
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formulations; one is based on producing all feasible routes, and the other is based on producing 

all feasible schedules. They introduce a two-phase route-generation algorithm to solve the 

pricing problem corresponding to the first formulation, and another algorithm as a schedule 

generator to solve the pricing problem of the second formulation. In their computational results, 

they show that their algorithms can solve 42 out of 52 instances with up to 120 customers, 

examples used in testing heuristic algorithms in the literature. 

Muter et al. (2014) develop a column generation algorithm for a multi-depot VRP (MDVRP) 

in which going through intermediate depots is allowed so that the vehicles may replenish. For 

instance, considering an ordered set of vertices on a route as             ,    and    in 

MDVRP refer to the same depot, whereas in their model,    and    can be two different depots. 

The vehicles can thus stop at    and replenish, and then continue serving another route. 

Therefore, Muter et al. (2014) define rotation as a sequence of ordered indices              for 

each vehicle, in which    and    correspond to a given depot, and the remaining vertices can be 

either customers or depots. A rotation is feasible if the total travel time is less than or equal to the 

maximum travel time allowed, and the sum of demands on each route of the rotation does not 

exceed the vehicle capacity. In their column generation algorithm, the authors formulate the 

problem as a set-covering model in which the decision variables are the rotations. They provide 

two pricing problems to generate the rotations. For the first, Muter et al. (2014) use the approach 

of the Elementary Shortest Path Problem with Resource Constraints, employing the label-

correcting algorithm to solve. In the second approach, the authors decompose each rotation into a 

set of routes to model the pricing problem and provide a two-phase method to solve it. The 

solution of the column generation algorithm is an LP relaxation, so they employ branch-and-
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price to find the optimal integer solution. Muter et al. (2014) can provide exact solutions for 

instances with up to 50 customers. 

2.1.2 VRP Solved with Heuristic Methods 

Many heuristics have been presented for the VRP. These can be categorized into route 

construction heuristics, two-phase methods and route improvement methods (Laporte and Semet, 

2002). For the route construction approach, we can point to the savings algorithm proposed by 

Clarke and Wright (1964), in which cost reduction is achieved by connecting two customers to 

each other in the same route instead of considering them in two separate routes. The savings 

method is fast but it has a poor performance, i.e., at the beginning, it generates good routes, but 

the routes get less interesting towards the end. Other researchers improved the performance of 

the algorithm, however with higher computational times (See Cordeau et al., 2007). 

The two-phase method decomposes the VRP into two sub-problems: clustering and routing. 

As for clustering, there are several algorithms proposed such as the Sweep algorithm. Then, the 

routing phase is treated as a TSP. 

For route improvement heuristics, local search is often used to improve the solutions of other 

heuristic methods (See Cordeau et al., 2007). Metaheuristics such as simulated annealing, genetic 

algorithm and neural networks have also been applied to the VRP. The metaheuristic ideas help 

to build powerful heuristics (See Cordeau and Laporte, 2004). 

2.2 Inventory Routing Problems (IRP) 

The IRP considers inventory management and vehicle routing simultaneously. The inventory 

routing problem aims to deliver products from a supplier to a group of customers on several 
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routes, with a set of side constraints. Some decisions are to be made by the supplier, e.g., when to 

serve each customer, how to build the routes, etc. to minimize the total cost of the system. 

Researchers have been working on the IRP for more than thirty years. Before this period, there 

were many publications in the area of inventory management and VRP separately. However, due 

to the limited computing power and lack of proper algorithms to solve large and complex 

combinatorial problems, the IRP appeared too difficult to handle (Coelho et al. 2014).  

The IRP can be classified based on inventory policy, structure of the supply chain or the time 

horizon. In addition, information about the customers’ demand can be known or unknown. If the 

demand information is available from the beginning of the horizon, or the probability distribution 

of demand is available, then the demand information is classified as “known”. Otherwise, the 

“Dynamic IRP” should be considered when the demand information is not available in advance 

(Coelho et al. 2014). 

We next provide a literature review of some articles relevant to our research. See Andersson 

et al. (2010) and Coelho et al. (2014) for a more thorough literature review on the IRP. 

Archetti et al. (2007) propose the first branch-and-cut algorithm for IRP with one vehicle. 

They develop an IRP in which a product is to be shipped from a supplier to a set of customers 

within a time horizon. The supplier has to monitor the level of inventory at the customers, and 

replenish their stock such that the inventory level reaches its maximum allowed. The supplier 

guarantees that there will be no stock-outs at the customers. The customers themselves define 

their maximum inventory level. Therefore, this problem has a vendor-managed, order-up-to-level 

inventory policy. The demands are known, and the vehicle has a certain capacity. The goal is to 

determine the quantity of shipments in each time period, and to design the routes. Archetti et al. 
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(2007) present a mixed integer linear programming model, and solve it by adding some valid 

inequalities to the LP relaxed model, then applying an exact branch-and-cut algorithm. 

In their branch-and-cut algorithm, the authors first relax the sub-tour elimination constraints 

and add some of the defined valid inequalities. At each node, they call the separation algorithm 

presented by Padberg and Rinaldi (1991). Whenever the sub-tour elimination constraint is 

violated, the corresponding constraint is added to that sub-problem. Otherwise, they branch 

based on the values of the variables. Archetti et al. (2007) solve instances with up to 50 

customers when the time horizon is 3, and up to 30 customers when the time horizon is 6. 

Coelho and Laporte (2013) extend the model of Archetti et al. (2007) by considering multiple 

vehicles. They also propose a branch-and-cut algorithm to solve the model. 

2.3 Cross-Docking 

Cross-docking involves the receipt of goods from suppliers, and preparing these items for 

shipment to retailers within a short time with no storage. Cross-docking reduces the logistics 

costs and may provide more customer satisfaction. Gumus and Bookbinder (2004) introduce 

several approaches to cross-docking.  They consider a network with a group of suppliers, a set of 

customers with known demands, and the sites of potential CDs. Decisions are to be made on the 

locations of the CDs, the numbers of trucks to be used both for direct shipment and through CDs, 

and on shipment consolidation. Gumus and Bookbinder (2004) propose a model for a sole 

supplier serving a single product to multiple customers. The authors provide some observations, 

such as on the efficiency of sending near-truckload shipments directly compared to cross-

docking. In addition, they observe that after subtracting the truckload shipments from the total 
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demand of a single customer, the entire remainder should be sent (whether through CD or 

directly) without splitting into more than one shipment. 

After solving the problem, Gumus and Bookbinder (2004) find that the demands are mostly 

consolidated and shipped through CDs if the fixed cost per truck is high, and the direct shipment 

is preferable only for near-truckload shipments. The authors also generalize their proposed 

model to multiple products, and provide a heuristic considering possible consolidation by 

product for the given customer. Then, they consider multiple manufacturers in their model, 

where each manufacturer can consolidate the demands of several customers, and each CD 

consolidates the demands on various products of particular customers. 

For a detailed literature survey on cross-docking, see the review articles of Stephan and 

Boysen, (2011), Van Belle et al. (2012) and Buijs et al. (2014). We next provide a literature 

review on articles related to our work in terms of cross-docking. 

Berman and Wang (2006) integrate transportation and inventory management to reduce the 

supply chain costs significantly. They consider a supply chain with a set of suppliers and a group 

of plants with demands on multiple products. In this supply chain, the total transportation cost, 

inventory carrying cost at the plants and the pipeline inventory cost is to be minimized. Also, the 

best distribution strategy (either direct shipment or cross-docking) is to be determined. The 

authors consider the frequencies of shipment as decision variables, too. Berman and Wang 

(2006) provide a heuristic and a branch-and-bound algorithm to solve the highly nonlinear 

mixed-integer programing model. Their algorithms are based on Lagrangean relaxation (LR). 

They also provide a greedy heuristic to find an initial feasible solution and also a proper 

upperbound to the problem.  
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These authors make some assumptions about the frequencies of shipment and the quantities of 

products so that the problem is solvable:  

1) The quantities of products in a shipment do not have to be integer. 

2) The shipment frequencies also can be any number and not necessarily an integer.  

3) Products are always available at the suppliers.  

4) The inbound-outbound coordination at the CDs is not considered. 

 5) All the quantities in a flow are shipped by the same transportation strategy, whether direct 

shipment or cross-docking.  

6) When loading a truck, only the volume of products is considered. Transportation costs do 

not depend on weight. 

In this model, the periods are identical. The transportation time parameters are in fact the 

ratios of transportation times to the length of the time horizon. Berman and Wang (2006) define 

one set of binary decision variables. Each variable is equal to 1 if the corresponding flow of 

product   from supplier   to plant   is going to be sent through CD   (    if it is a direct 

shipment). To write the objective function, the authors first formulate the frequencies of 

shipment. Then, the transportation cost is the sum of all transportation costs of each flow 

multiplied by the corresponding shipment frequency. The inventory cost at each customer is the 

total holding cost of that customer divided by its shipment frequency.  

The only constraint that they have is on demand satisfaction. Those authors relax the 

constraint using LR, and then the LR formulation becomes decomposable. After decomposition, 

they come up with some analytical results, and using the results of those, Berman and Wang 
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(2006) develop a branch-and-bound algorithm to solve the sub-problems. They also provide a 

Lagrangean heuristic. They provide some numerical results and show that their Lagrangean 

heuristic is very fast and the lower bound is tight. The gap between the Lagrangean heuristic 

solution and the optimal solution is less than 1%. 

Abouee-Mehrizi et al. (2014) propose a column generation algorithm to solve a two-echelon 

model consisting of a number of suppliers, a group of capacitated CDs and a set of customers. 

The number and the locations of the capacitated CDs are to be determined, and the demands of 

customers must be satisfied by minimizing the pipeline inventory cost, inventory cost at the 

customers and the transportation cost. The proposed model is a nonlinear mixed integer program. 

The authors show that the “Capacitated Plant Fixed-Charge Transport Location Problem” is a 

special case of their problem. To solve it, they show that their model can be written as a cutting 

stock problem. The authors also solve the problem when the vehicle capacities are decision 

variables. They provide some numerical results to show the efficiency of their algorithm. As in 

Berman and Wang (2006), Abouee-Mehrizi et al. (2014) also consider the frequencies of 

shipment. In the column generation algorithm provided by Abouee-Mehrizi et al. (2014), the CD 

capacity constraints are relaxed using Lagrangean relaxation. It is shown that the structure of the 

pricing problem is similar to the one in Berman and Wang (2006), except that the latter authors 

dealt with binary variables while Abouee-Mehrizi et al. (2014) are dealing with integer variables. 

Since the sub-problem is a bounded integer program, they transform it into a binary integer 

program. Therefore, those authors use the branch-and-bound algorithm of Berman and Wang 

(2006) and find it efficient for their model, as well. 
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2.4 Vehicle Routing with Cross-Docking 

Wen et al. (2009) introduce the VRP with cross-docking (VRPCD) in which the suppliers ship 

products to customers through a CD. Their objective is to minimize the total travel time, 

considering time window constraints for the customers. They propose a mixed integer 

programming model and develop a solution algorithm based on Tabu Search. The authors test 

their model on data provided by Danish Consultancy Transvision involving up to 200 arcs. They 

show that the gap of the model is less than 5%. Wen et al. (2009) consider the loading and 

unloading of trucks at the CD as decision variables, so that they can consider direct shipment, 

too. 

Santos et al. (2011) reformulate the VRPCD and propose a branch-and-price algorithm to 

solve the model. They state that they are the first authors that provide an exact algorithm for 

VRPCD. Those authors also include the cost of changing loads at the CD in their objective 

function. They formulate the pricing problem as a Resource Constrained Elementary Shortest 

Path Problem. To solve the pricing problem, they use dynamic programming. 

Baldacci et al. (2013) present an exact algorithm for the two-echelon CVRP (2E-CVRP). 

They consider intermediate capacitated depots called “satellites,” in which shipments are 

managed from a depot to customers. Although they name the intermediate depots as satellites, 

their application seems to be more like cross-docking, because they consider only a handling 

cost, proportional to the quantities loaded or unloaded at the satellites. Therefore, it is worth 

mentioning their article in this section. The customers are to be visited exactly once. However, 

the satellites can be visited by more than one route originating from the depot. 
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Baldacci et al. (2013) introduce a new formulation and apply both integer and continuous 

relaxations to it. They use dynamic programming to find better bounds to the problem. They also 

decompose the 2E-CVRP into a set of “Multi-depot Capacitated Vehicle Routing Problems” with 

side constraints. 207 instances are run with up to 100 customers and 6 satellites.  

In the next chapter we will provide the problem definition and the formulation of our 

problem. We consider an IRP model with cross-docking (IRPCD), considering frequencies of 

shipment. To the best of our knowledge, there is no article in the literature addressing the IRPCD 

and shipment frequencies for the VRP. 
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Chapter 3  

Problem Formulation 

 

3.1 Problem Definition 

We consider a number of suppliers who serve multiple customers, each ordering various 

product types. The goal is to design optimal routes to satisfy the customers’ demands, routed 

through one or more CDs. Multiple customers will be served by each route originating from CDs 

after consolidating the shipments that arrived from several suppliers. Shipments from suppliers 

to the CDs are assumed to be direct.  

2
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Figure 1 – Distribution strategy 
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Apart from designing optimal routes with minimum costs, we are also interested in finding the 

optimal frequencies of shipment on each route. The vehicles have a finite capacity, and the total 

demands delivered on each route are allowed to be greater than the vehicle capacity; in that case, 

the vehicle assigned to that route has to deliver those demands in more than one trip to 

customers. Therefore, the frequencies of shipments are also treated as decision variables. This 

applies as well to the trips between suppliers and CDs, hence those frequencies of shipment are 

to be determined.  

Berman and Wang (2006) ship multiple products through CDs, considering frequencies of 

shipment, but to a single customer at a time. Moreover, they assume that the supplier-product 

combinations are decided in advance for each customer. Abouee-Mehrizi et al. (2014) find 

optimal shipment frequencies in a supply chain with capacitated CDs. However, they too 

consider only direct shipments. To the best of our knowledge, there is no article aimed at 

shipment frequencies in the context of vehicle routing. 

The total cost in our model consists of five parts: transportation cost from CDs to the 

customers (  ), pipeline inventory cost from CDs to customers (  ), inventory holding cost at 

the customers (  ), transportation cost from suppliers to the CDs (    , and pipeline inventory 

cost from suppliers to CDs (   ). 

No publication in the literature addresses pipeline inventory in VRP. Indeed, calculation of 

the pipeline inventory cost requires that the routes be designed in advance: the aggregate 

demands of all the customers on a specific route must be known to determine how much holding 

cost these demands incur on that route; the sequence of customers visited must be known 

because those are the edges on which each demand travels to get to the corresponding customer. 
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 This preceding limitation of pipeline inventory cost makes the modeling quite challenging. 

That is why we put an assumption here: indices of customers always increase in the direction of 

the route, meaning that going from one customer to another is allowed only if the index of the 

first customer is smaller than the latter. 

The above assumption can be interpreted in another way. We can say the cost matrix is such 

that in the upper triangular portion, each element is the cost of traveling over the corresponding 

edge, but in the lower-triangular parts, all the elements are infinite. That assumption can be 

operationalized by applying a heuristic to sort the customers in advance, to get a solution that is 

close to optimal. 

As a summary, the goal of our model is to minimize the sum of total cost by designing proper 

routes and finding optimal shipment frequencies, satisfying all the customers’ demands. 

We assume that products are always available at the suppliers. In addition, there are no 

capacity constraints for the CDs. All products of the same type to be shipped to a specific 

customer are assumed to be delivered through a single CD and on a single route. Two types of 

vehicles are available, one for the trips from suppliers to CDs, and one for routes originating 

from the CDs. 

Similar to Berman and Wang (2006), when loading a vehicle, the product volumes are 

considered. Based on vehicle capacity, the sum of the demands for a route is divided by the 

vehicle capacity to find the shipment frequency. Therefore, the product units are “infinitely 

splittable”, meaning that the quantity of product in a shipment does not have to be integer. In 

addition, the shipment frequency can be any number, not necessarily integer.  
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Our simplifying assumptions could mean that the model might not apply to some real 

systems. However, solution of our model can approximate the costs of those real systems and the 

corresponding distribution strategies, and provide insights on real world systems. 

3.2 Model Formulation 

3.2.1 Notation 

Let  , ,   and   be the sets of available suppliers, CDs, customers and products respectively. 

Table 1 introduces the notation used in the model formulation. More than one route can originate 

from a particular CD. Thus, to be able to write a separate cost function for each route, we 

establish that each CD can be referred by a set of “dummy CDs”, such that each dummy CD 

serves at most one route. Therefore, we define set   as the set of dummy CDs for CD  . This 

helps us to deal with each route separately, in terms of design and relative costs. As a result, the 

process of decomposition of the objective function will be possible. This will be elaborated later. 

The maximum number of routes that can be assigned to a CD is equal to         because 

there are     customers in the system, and each of them can potentially order at most     types of 

products. For the worst case, each customer would be served by its own direct shipment, and 

each product would be sent on its own separate route. Hence, the maximum number of dummy 

CDs equals        .  

In fact, each dummy CD refers to one route. However, in the next chapter, we show that the 

number of dummy CDs is not a concern for us as we decompose the objective function over   

and  . Also let  ̅     , which is the set of all customers and CDs together. When writing the 

equations, we assume the indices of the CDs are smaller than the indices of the customers in  .̅ 
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As an example, concerning the CDs and customers as a sub-system, consider two CDs with 

three customers and a single product. We will have three dummy CDs per CD. In Fig. 2, the first 

customer (Customer 4) is served by CD 1, and two other customers are served by CD 2. Note 

that in this figure, dummy CD     refers to the  th dummy of CD  . 
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Figure 2 – Routes assigned to CDs 

Also in Fig. 3, all customers are served by direct shipments originating from CDs. The first 

two customers are served by CD 1 and the third one by CD 2. 
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Figure 3 – Routes assigned to CDs 
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Notation Description 

   Capacity of the vehicles travelling from CDs to customers 

  
  Capacity of the vehicles travelling from suppliers to CDs 

   Volume of a vehicle occupied by one unit of product       

    Demand of customer   for product           

    Transportation cost of a trip on edge            ̅          

   
  Transportation cost of a trip on edge                 

   Cost to hold one unit of product   over the time horizon (one period) 

    Travel time (periods) on edge            ̅          

     Travel time (periods) on edge                 

    Frequency of shipment on  th route of CD  ,           

     Frequency of shipment on edge                 

Table 1 – Notation    

3.2.2 Decision Variables 

Our formulation of this model involves four sets of variables defined as: 

    
  

 {
                                                                 

                                                                
                                                                                              

                        

    
  

 {
                                                                

                                    
                                                                                                    

                  

    
  

 {
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{
 
 

 
 
                                                                    

                                                          
                                                          

                                                                     
                                                                    

                                                                                                        

                  

We also need to define a variable as     
  

 , which shows whether the edge       is going to be 

used or not: 

    
  

         
  

      

The frequency of shipment from a CD to a set of customers is calculated as below: 

    
∑ ∑ ∑          

  
         

  
            

This means that the frequency of trips through CD g on route   is equal to sum of the 

demands of customers’ volume on all products that are going to be served by CD g on route  , 

from all suppliers, divided by the vehicle capacity. 

3.2.3 Cost Function 

Now that we have defined variables and parameters, we can write the cost function. This 

consists of five different parts, and is formulated as follows: 

3.2.3.1 Formulation of Transportation Cost from CDs to Customers  

   is computed by adding up the costs of the edges through which the trips have gone, times 

the frequencies of those shipments for all CDs.  
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As mentioned before,     
  

 shows whether the edge       is going to be used or not. If more 

than one product is assigned to a given route  , the corresponding volumes of those products will 

be summed up in the frequency equation; taking the maximum of     
  

 shows that this specific 

edge is going to be traversed on only one route, i.e. whatever product it is, it is going to be 

delivered on route   of CD  . If there is a direct shipment from a CD to a customer, although 

that edge may be part of other routes as well, index   makes them independent of each other. 

Taking the maximum value for that specific edge of the route with a specific   will result in the 

value of 2 in direct shipment, meaning that there are several products shipping directly from a 

CD to a supplier; thus the variable (    
  

) works properly. Therefore, the transportation cost is: 

   ∑∑∑ ∑        
  

   

    ̅        

                

Substituting Eq. (1) in Eq. (2), we have: 

   ∑∑∑ ∑        
  

∑ ∑ ∑        
    

  
          

  
    ̅        

 
 

  
∑ ∑ ∑ ∑ ∑ ∑ ∑           

    

  

           ̅   

    
  

            

                      

Note that when  
    

  
  , based on the constraints defined for designing the routes,     

  
 will 

be equal to 1 if edge       is a part of route      . This means that     
  

   if     
  

   and 

 
    

  
  . Also,     

  
   if     

  
   and  

    

  
   since in this case route       is a direct 

shipment to customer   for product  . Therefore, we can write Eq. (3) as follows: 
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∑ ∑ ∑ ∑ ∑ ∑ ∑           

    

  
    

  

           ̅               

                 

Eq. (4) is true because  
    

  
    

  
   if  

    

  
  , no matter what the value of     

  
 is, and 

 
    

  
    

  
   if and only if  

    

  
    

  
  . Also,  

    

  
    

  
   if and only if  

    

  
    

  
  . 

Eq. (4) can now be interpreted in another way, distinct from that presented at the beginning. 

Whatever the frequency of shipment for route      , all demands of the route must be delivered 

at the end, and all product quantities must traverse the full set of edges. The reason is that since 

   is based on the vehicle capacity travelling over every edge, even if the vehicle becomes 

partially or totally empty,    is still considered for the whole vehicle capacity. Therefore, the 

total volume of each product demand on a route should be multiplied by the cost of all edges of 

that route, which is in fact done in Eq. (4). 

Note that    is nonlinear as variables   and   are multiplied by each other.  

3.2.3.2 Formulation of Holding Cost at the Customers  

The customers follow EOQ policy for their inventory. Each type of product has a different 

holding cost. Therefore, before considering shipment frequencies,    of product   for customer 

  is equal to 
     

 
. Considering all the products demanded by customer  , the total    for 

customer   is 
∑         

 
. In our formulation, we wish to consider the holding costs of each route 

separately, to employ the frequencies of shipment. Thus, using     
  

 to decide which demand 

should be satisfied by route      , the total    for all customers on route       is equal to  

∑ ∑ ∑
         

  

      .  
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The latter equation is true when no frequencies of shipment are allowed. To implement the 

idea of shipment frequency, we have to divide that equation by     because depending on the 

shipment frequency, the maximum quantity of products delivered at the customer in each trip, 

would be the maximum inventory level. Note we assume that the next shipment arrives at each 

customer whenever their inventory level is zero (EOQ policy). Since the maximum quantity 

shipped equals total demands divided by      the total    over all routes is 

   ∑∑∑∑∑
         

  

    
       

                    

Since     itself is a decision variable,    is nonlinear, too. After substituting     in Eq. (5), 

we have: 

   ∑∑
∑ ∑ ∑          

  
         

 
  

∑ ∑ ∑          
  

           

                    

Let  ̅  
   

  
, so    is: 

   ∑∑
∑ ∑ ∑          

  
         

∑ ∑ ∑  ̅        
  

           

                  

3.2.3.3 Formulation of Pipeline Inventory Cost from CDs to Customers 

To calculate   , the travel time on edge       should be considered. Treating the total time 

horizon as one period,      is the ratio of the travel time on edge       to the period length. As 

mentioned before, each customer can be connected only to a customer with larger index or to a 

CD. Therefore, for all the demands, the holding cost should be considered on all edges, traversed 
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by each route       until reaching its destination. Demand of   for customer   should be 

multiplied by        if edge        is part of route       and     . As a result, for all the routes 

     ,    is calculated by the following equation: 

   ∑∑∑∑         
  

∑ ∑      
    

  

 

           

         

Note that, since all demands of customers must traverse a route to be delivered, no matter 

what the shipment frequency is, we have built Eq. (8) without using the idea of shipment 

frequency.    is also nonlinear. 

3.2.3.4 Formulation of Transportation Cost from Suppliers to CDs 

As noted previously, the shipment strategy considered for suppliers is direct to CDs. We thus 

need to calculate the transportation cost of the product quantities shipped from supplier   to 

cross-cock  . To formulate    , the approach is to obtain the shipment frequency and then 

multiply it by the cost to traverse edge      . Demands for each product shipped from supplier   

to CD   are added up; the frequency of shipment is calculated by dividing that result by vehicle 

capacity. The sum of all shipment costs over all edges is the total transportation cost between 

suppliers and CDs. 

   
  

∑ ∑ ∑          
  

   

  
                     

    ∑∑   
    

 

  

                      

Substituting Eq. (9) into Eq. (10), we have: 
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    ∑∑   
 

∑ ∑ ∑          
  

   

  
 

  

   
 

  
   ∑∑∑∑ ∑   

          
  

     

                 

3.2.3.5 Formulation of Pipeline Inventory Cost from Suppliers to CDs 

With the total time horizon again as one period,     is the proportion of the period length 

represented by travel time on edge      .     is the sum of holding costs incurred during each 

trip:  

    ∑∑∑∑ ∑            
  

     

                     

 

3.2.3.6 Objective Function 

The goal of the model is to minimize the total supply chain cost, which equals 

                                       

The objective function is highly nonlinear since   ,    and    are all nonlinear.  

3.2.4 Constraints 

We must ensure that demands of the customers are satisfied, and also proper routes are 

designed such that there is at least one dummy CD on each route. Constraints (15) and (16), 

which are respectively route designers and cycle eliminators, are borrowed from Archetti et al. 

(2007). 

The constraints of this model are as follows: 
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∑∑∑    
  

   

                                           

∑     
  

       

 ∑     
  

    ̅   

  ∑    
  

 

           ̅                              

∑ ∑     
  

          

 ∑∑    
  

    

 ∑    
  

 

                                           

     ∑    
  

   

                               

      ∑    
  

   

                                

∑∑    
  

  

 ∑ ∑     
  

        

                             

∑ ∑     
  

        

  (    )                                   

                
  

                

                
  

                

    
  

           
  

                                  

     
  

           ̅                          
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Constraint (14) indicates that all customers should receive their requirements of product p 

from at least one CD. This constraint also means that at least one supplier should supply each 

customer, and therefore, all demands should be satisfied. 

Constraint (15) is considered to make sure each customer is connected to two other nodes (if a 

vehicle enters that node, it should be able to exit it). Constraint (16) is a cycle elimination 

constraint. 

Constraints (17) and (18) make sure that the costumers are connected to each other in an 

ascending order. Constraints (19) and (20) ensure that in a multi-product problem, all products 

delivered on a given route, traverse all the edges.  

Constraints (23), (24) and (25) are related to feasible values of variables. The direct shipment 

from a CD to a customer is possible, so     
  

 can equal 2. When index   in variables     
  

 and 

    
  

 is an element of G,   must equal index g. Otherwise, the corresponding variables does not 

make sense, meaning that both indices should refer to the same CD involved in route k. (21) and 

(22) force the values of any “nonsense” variables to be zero. 

To be able to solve the nonlinear mixed integer programming model with large number of 

variables introduced above, we next provide some analytical results.  

3.3 Analytical Results 

In this section, we demonstrate two analytical results. Theorem 1 is related to some solutions 

that seem to exist in the feasible region, but they should have been considered as infeasible. We 

prove that these solutions will never be optimal. As we know, each set of dummy CDs represents 

a single CD. At most one route is assigned to each dummy CD. Therefore, if two or more 
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dummy CDs in a set serve different products for identical customers on the same edges, then it 

means that there are two or more vehicles traveling on identical routes, both starting from a 

specific CD. However, our purpose is to assign only one vehicle to each route. Therefore, 

normally, this condition should be considered as an infeasible solution. In Theorem 1, we will 

prove that although these solutions exist in the feasible region, they will not appear in the 

optimal solution because the cost of the route resulting from merging those identical routes will 

be lower than the sum of the costs of all individual routes. Theorem 2 helps us to reformulate our 

model with only one set of variables and simpler edge-based constraints. 

Theorem 1. Let                              and                              such 

that       and      . Then               and        will not appear in the optimal 

solution together. 

Proof: There might be two dummy CDs representing one specific route at the same time in 

feasible solutions, as can be seen in Fig. 4. 

g

k2

k1

i

j

 

Figure 4 – Dummies of a same CD with identical routes 

Routes 1 and 2 with the same edges and nodes may appear to be feasible, according to the 

constraints of the model. However, we will prove that the sum of the costs of these two routes is 



30 

 

always higher than the cost of having all products shipped on a single route (           ). 

Solutions similar to Fig. 4 will not thus appear in the optimal solution. 

According to the cost function, Eq. (13), the total cost consists of five parts. Three are related 

to trips between CDs and customers, and two parts involve supplier - CD trips. It is obvious that 

    and     for a specific CD, are the same for the two scenarios we compare. Consider the sum 

of     and    : 

        ∑∑   
 

∑ ∑ ∑          
  

   

  
 

  

 ∑∑∑∑∑            
  

     

         

Let    represent the indices of the two dummy CDs with identical routes. For CD  , each 

dummy CD   , and with    the set of customers served by those two dummy CDs, Eq. (26) 

becomes 

   
     

  ∑   
 

∑ ∑          
   

     

  
 

 

 ∑∑∑             
   

      

         

The sum of corresponding costs for the two identical routes is: 

    
      

      
      

 

 ∑   
 

∑ ∑       
   

    
     

  
 

 

 ∑∑∑         
   

    

      

 ∑   
 

∑ ∑          

    
     

  
 

 

 ∑∑∑         
   

    

      

  ∑(∑   
 

∑ ∑            
  

     

  
 

 

 ∑∑∑            
  

      

)
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Eq. (26) for the merged route (           ) will be as follows: 

        
          

  ∑   
 

∑ ∑ ∑          
  

       

  
 

 

 ∑∑∑∑            
  

        

         

Equations (28) and (29) are equal: 

∑   
 

∑ ∑ ∑            
  

       

  
 

 

 ∑∑∑∑            
  

        

 ∑(∑   
 

∑ ∑            
  

     

  
 

 

 ∑∑∑            
  

      

)

  

        

Therefore,     and    are the same for both scenarios. 

The rest of the cost function in the model consists of three parts, based on Eq. (13):   ,    

and   . We look at each part separately: 

Comparison of   s: Consider Eq. (4). For identical routes 1 and 2, we have: 

    
 

  
∑ ∑ ∑          

                 

                       

In terms of shipment frequency, since the two dummy CDs are actually a single CD, the edge 

travelling costs are the same for both routes. This result can also be derived from the following 

equation 

       ∑    
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The cost of a single trip for each CD is ∑            
, and multiplying that cost by shipment 

frequency yields the total transportation cost for that route. 

        , the transportation cost of the merged route, is as follows: 

         
 

  
∑ ∑ ∑          

                    

           ∑    

        

             

Since the total shipment quantity for the merged route is equal to the sum of the quantities 

shipped on Routes 1 and 2, and shipment frequency is quantities shipped divided by the vehicle 

capacity, we have: 

                             

Thus,                 . 

Comparison of   s: For CD   and dummy CD    , the holding cost is: 

    ∑∑∑
         

  

    
     

                  

For     and the same CD, the holding cost is: 

    ∑∑∑
         

  

    
     

                   

The sum of the cost of two separate routes is: 

        ∑∑∑
         

  

    
     

 ∑∑∑
         

  

    
     

                



33 

 

For the merged route, the holding cost is as follows: 

         ∑∑∑
         

  
          

  

          
     

             

Eq. (38) means that all demands which were delivered by two separate vehicles (two separate 

dummy CDs) on the same route are now summed up to be delivered on one route. The 

frequencies are also added up. 

We need to to prove that                 , which is in fact the case: 

   

   
 

 

 
 

 

 
            

where 

∑∑∑         
  

     

             

                     

∑∑∑         
  

     

                   

                        

and             are all positive. 

To prove that Eq. (39) is valid, consider that equation: 
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We know that: 

 

   
 

 

 
 

 

   
 

 

 
           

By adding up the two inequalities in Eq. (45), we have: 

 

   
 

 

   
 

 

 
 

 

 
            

Therefore, 

   

   
 

 

 
 

 

 
           

This result proves that the holding cost related to the merged route is lower than the sum of 

the holding costs of the separate routes: 

∑∑∑
         

  
          

  

          
     

 ∑∑∑
         

  

    
     

 ∑ ∑∑
         

  

    
     

           

Comparison of   s: For CD   and dummy CD    , let    and    be the sets of products 

shipping on routes 1 and 2 respectively. Then,     is: 

    ∑ ∑      ∑ ∑     

                          

            

And for     we have: 

    ∑ ∑      ∑ ∑     
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For             , the total demand shipped is the sum of all demands shipped on the two 

separate routes, and the pipeline inventory cost equals the sum of     and    . 

         ∑ ∑      ∑ ∑     

                             

                      

As explained above, the transportation cost and the pipeline inventory cost are the same for 

both scenarios, and the only difference is in holding costs at the customers. Since the holding 

cost related to the merged route is always lower than the sum of the holding costs of the separate 

routes, two independent routes corresponding to two dummy CDs with the same edges and nodes 

will never appear in the optimal solution. □ 

Theorem 2. All products of one type  , sent through a specific CD  , are provided by that 

single supplier   which yields the minimum value for (
   
 

  
         ). 

Proof. Consider the optimal solution with a set of customers served, whether totally or 

partially, by a specific CD. By analyzing the cost of shipments from suppliers to that CD, we 

want to see which supplier has provided those products to that CD. Using Equations (11) and 

(12), for a specific product   demanded by customer   and shipped through CD  , the shipment 

cost ( ) from supplier   is the sum of the corresponding transportation cost and pipeline 

inventory cost: 

      
   

 

  
                     

   
 

  
                        

We take the minimum of this cost among all suppliers, and name the corresponding supplier 

as   . Let        be the minimum of the cost among all suppliers sending demand     to CD  .  
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When    ,    ,  and    , Eq. (52) is: 

         (
   

 

  
         )          

         (
   

 

  
         )               

         (
   

 

  
         )              

Comparing Equations (53), (54) and (55), we can see that since the demand     is constant, 

we have: 

(
    

 

  
          )  

 
   
   

{(
   

 

  
         )}               

Now, consider one other customer (  ) who also receives product   through CD  . This 

customer will get served by a supplier with minimum cost as well. Suppose the supplier with 

minimum cost serving customer    through CD   is    
 . Therefore, based on Eq. (54), we have: 

    (
  

  
  

 

  
      

  
    )      (

    
 

  
          )             

Since      is a positive value, it will cancel out from the two sides of the inequality. 

Therefore, inequality (57) will change to: 

(
  

  
  

 

  
      

  
    )  (

    
 

  
          )             

Based on Eq. (55), inequality (58) will become 
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(
  

  
  

 

  
      

  
    )  (

    
 

  
          )             

As a result,    is the supplier that will serve customer    for product  , the same supplier that 

provides product   for customer  . Therefore, the entire product   that goes through CD   will 

be provided by a single supplier, the one with the minimum value for (
   
 

  
         ). □ 

Suppose    is the single supplier for product    shipped through CD  .    is not always the 

best supplier for other types of products because choosing the best supplier depends on  . 

Corollary 1. Consider an ascending order for        as                    such that 

product     is the  th smallest product in terms of volume. If                   , then    is 

the single source for all the products shipping to CD  . □ 

Using Theorem 2 in the next chapter, the model is formulated in terms of a single set of 

variables, without changing any of the assumptions.  



38 

 

 

 

Chapter 4 

Solution Method 

 

4.1 Reformulation 

4.1.1 Modifying Decision Variables 

Based on the analytical results provided in Chapter 3, we modify the initial formulation by 

omitting the set of variables     
  

. Reformulation and removing     
  

 has many advantages. First, 

the number of variables reduces significantly. Second, we provide an edge-based formulation for 

the model. Also, we demonstrate that we can linearize the nonlinear objective function, which 

enables a solution method based on model decomposition and a column generation algorithm.   

    
  

 indicates whether each node is on a particular route or not. To remove that set of 

variables, we need to relate the suppliers to     
  

. Based on Theorem 2, we define        as the 

supplier who provides product   to CD  . In that case, since   depends only on   and  , we can 

remove the summation over index   in the model formulation. Moreover, when     
  

  , we 
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know that product   is sent though edge       by       . Therefore, we modify variables     
  

 

such that they carry the information corresponding to the suppliers. The new set of edge decision 

variables is           
  

 which we refer to it as      
  

 for convenience because the information about 

  and   is already there. We add the subscript   to the existing set of variables without changing 

any of the assumptions, and this will be the only set of decision variables in the model. For other 

parameters, we use        instead of  . 

In addition, we define      
  

       
  

       
  

 such that       
  

   if customer   is the first 

customer on the route starting at CD  , and       
  

   if customer   is the last customer that the 

vehicle visits before returning to CD  . Note that    and    both refer to CD  . In addition, in 

case of having a direct shipment from CD   to Customer  , both       
  

 and       
  

 will be equal 

to 1, which is equivalent to having      
  

    Separation of      
  

 into two variables has two 

advantages: first, all variables will be binary, and second, the process of rewriting the edge-based 

routing constraints will be easier. 

When removing     
  

, we now need to include      
  

 such that it takes the role of     
  

. Since 

     
  

 refers to edge      , it can represent both nodes   and  ; whereas,     
  

 only points to node  . 

Hence, we need to rewrite the equations, so that they become compatible with this substitution. 

This is elaborated in the next sections. 

 After modifying the decision variables, we reformulate the problem. Each part of the new 

formulation is now given. 
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4.1.2 Reformulation of    

After substituting      
  

 for     
  

, we take into account     as the demand of Customer   on 

edge       because if we consider    , the demand of the last customer of the route will not be 

counted. Note that      because if we consider edge       , then     will be counted twice. 

Hence, based on Eq. (4), we have: 

   
 

   
∑ ∑ ∑ ∑ ∑ ∑ ∑                

  

          

        

              

          

           
         

 
      

  
         

Let us define a new parameter    
   

   

   
, the shipment cost per unit volume divided by 2 on 

edge      . Therefore,    becomes: 

   ∑ ∑∑ ∑ ∑ ∑ ∑        
          

  

          

        

              

          

           
     

 
      

  
              

     
  

 refers to the customers   and   that are on route       receiving product   from supplier 

 . If those customers are parts of route      , then this variable equals 1. Now variable  
      

  
 

will be equal to 1 if edge         is a part of route      . Note that the demands of customer   

should be considered to traverse all edges        , if         is a part of the corresponding route. 

This is because    accounts for all vehicle trips, whether empty or full.  

4.1.3 Reformulation of    

As in the case of   , we consider edges instead of nodes to formulate   . The idea is to add 

up the holding costs of Customer   for edge       for all edges of the route except the last edge 
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which is edge       . The reason is the demand of the last customer of the route is already 

considered. This applies as well to frequencies of shipment.    based on Eq. (7) is modified as 

   ∑∑

∑ ∑ ∑          
  

       
           

 

∑ ∑ ∑  ̅        
  

       
           

   

           

4.1.4 Reformulation of    

Pipeline inventory cost does not change significantly. There is no pipeline inventory for the 

last edge of a particular route, since the vehicle is empty. Since we do not take the last edge into 

account when calculating   ,  the reformulated equation becomes 

   ∑∑∑∑ ∑           
  

∑ ∑       
      

  

 

           

             

      

           
    

          

As       is an element of a matrix in which the lower triangle is zero, we can modify the last 

summation of Eq. (63) as: 

   ∑∑∑∑ ∑           
  

∑ ∑       
      

  

 

           

             

      

           
    

          

4.1.5 Reformulation of     

To deliver all demands of the customers, the product quantities should first traverse the edges 

connecting the suppliers to CDs. Using the same variable sets, we calculate the costs thus 

incurred; based as before on shipment frequencies. Therefore, the new equation for     is: 
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Thus, we have: 

    ∑∑∑ ∑ ∑
         

 

   
           

  

       

           
   

            

4.1.6 Reformulation of     

Using the same approach for reformulation of    , pipeline inventory cost from suppliers to 

the cross-docks is: 

    ∑∑∑ ∑ ∑
                   

  

 
       

           
   

                

Note that in the     and     equations,      
  

 is interpreted as customers   and   who are 

served by supplier   on route   and product  ; that variable does not refer to edge     . 

4.1.7 Edge-Based Constraints 

Having removed the node decision variables, we now write the constraints in terms of      
  

  

which can be considered as edge-based constraints. The new edge-based constraints are 

∑∑ ∑      
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Relations (69) indicate that all customers should receive their requirements of product   

through at least one CD. Constraints (70) are considered to make sure the degree of the vertex 

corresponding to each customer equals 2 if that customer’s demand for product   is positive. The 

inequalities (71) are cycle-elimination constraints (This means that only a single CD should exist 

on any route). Constraints (72) and (73) ensure that the routes are generated based on the ordered 

customers. To make sure that only one route is generated per each dummy CD, Constraints (74) 
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and (75) are considered. Finally, (76), (77) and (78) define the ranges and allowable indices for 

the decision variables. 

4.2 Linearizing the Model Formulation 

As can be seen in Equations (61), (62) and (64),   ,    and    are nonlinear.    and    are 

quadratic while    is the sum of a number of fractional terms. In Theorem 3, we demonstrate 

that we can linearize the quadratic parts by replacing each multiplication of two variables by a 

new variable.  

Proposition 1.  
        

  
 can be defined as equivalent to the product of      

  
  

      

  
 that is 

when                    ,               
         , and the variable  

        

  
 

     . 

Proof. Since      
  

 and  
      

  
 are binary variables, their multiplication together can have only 

two results, 0 and 1.   

Variables      
  

  
      

  
  

        

  
      

  
  

      

  
 

Possible Values 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

Table 2 – Values of   obtained by values of   

Clearly  
        

  
   only when both      

  
 and  

      

  
 are equal to one; otherwise,  

        

  
 

 . Note that when      and     , we have: 
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Therefore, we can consider        
  

 as the decision variable related to each edge       for 

product   on a particular route. Based on the definition of  
        

  
 and Eq. (79), we provide a set 

of constraints which relate the variable arrays   to  , such that the logic of Table (2) holds: 

       
  

  
          

  
  

        

  
                                                            

Constraint (80) indicates if edges       and         are chosen (the left hand side equals 2), 

then  
        

  
 must also equal 1. If either of these edges is not part of that route, then there is 

nothing that forces  
        

  
 to be 1. Since this is a minimization problem and the coefficient of 

 
        

  
 is positive in the linear parts of the objective function, and zero in the nonlinear part 

when              ,  
        

  
 will equal zero in this case. That is equivalent to the results shown 

in Table 2. Therefore, considering Constraint (80), Eq. (81) holds: 

 
        

  
      

  
  

      

  
                                                        □ 

Corollary 2. For all                             , if     , then  
       

  
  . 

Similarly, if     , then  
       

  
  .  

Proof. The preceding follows from the assumption that indices of customers are ascending on 

a route. There are thus no pairs of edges available on a route such that their starting points are 

identical. □ 

4.3 Reformulation of Model Based on Variable   

Now, we reformulate the model based on the new set of variables defined to linearize the 

model.  
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Considering Equations (61) and (81), the linearized    is  

   ∑∑∑ ∑ ∑ ∑ ∑        
      

        

  

          

        

              

          

           
     

              

Since    is not quadratic, we use Eq. (79) to modify Eq. (62).    thus becomes 

   ∑∑

∑ ∑ ∑             
  

       
           

 

∑ ∑ ∑  ̅           
  

       
           

   

                  

To reformulate   , similar to   , we replace      
  

  
      

  
by  

        

  
 in Eq. (64). Therefore, 

   becomes linear. 

   ∑∑∑∑ ∑      ∑ ∑       
        

  

 

           

             

      

           
    

          

    and     are both linear, so we use only Eq. (79) to modify those two expressions. The 

results are 

    ∑∑∑ ∑ ∑
         

 

   
             

  

       

           
   

            

and 

    ∑∑∑ ∑ ∑
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We now turn attention to the constraints. Since they contain no quadratic term, we replace all 

     
  

with        
  

 based on Eq. (79). We also add the inequality (80) to the set of constraints, 

which now become 

∑∑ ∑        
  

      

           
  

                        

           ∑        
  

      

       

      

                                     

 ∑(         
  

          
  

)

   

 ∑∑ 
        

  

       

                              

       
  

  
          

  
  

        

  
                                                            

                   
  

                  

 
        

  
                                                                

4.4 Solution Method 

Although the quadratic equations of the objective function have been linearized,    is still 

nonlinear: it is a set of fractions in which both numerator and denominator are linear. Therefore, 

the model is not still solvable. The approach of dummy CDs that was previously explained in the 

problem definition is very helpful to solve the model. It allows us to decompose the objective 

function over   and  . This means that we can consider the cost of each route       separately. 

Objective function decomposition has two advantages. We can calculate the cost of all possible 



48 

 

routes separately, and hence define a set-covering problem to choose a number of these routes 

such that the demands of all customers are satisfied and the total cost is minimized. The other 

advantage of decomposition is we are then able to linearize   . We elaborate on these two 

approaches further. 

4.4.1 Objective Function Decomposition 

All five parts of the objective function are decomposable over   and  . The result of that 

decomposition is 

     ∑ ∑ ∑ ∑ ∑        
      

        

  

          

        

              

          

           
   

              

     

∑ ∑ ∑             
  

       
           

 

∑ ∑ ∑  ̅           
  

       
           

 

                  

     ∑∑ ∑      ∑ ∑       
        

  

 

           

             

      

           
  

          

    
  ∑ ∑ ∑

         
 

   
             

  

       

           
 

            

    
  ∑ ∑ ∑
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This means that the total objective function is decomposed into         sub-problems. The 

constraints will be redefined for each decomposed problem separately. 

4.4.2 Linearizing    

After decomposition, we can linearize    by setting the whole fraction equal to the variable 

   . 

∑ ∑ ∑             
  

       

          
 

∑ ∑ ∑  ̅           
  

       

          
 

                  

Assuming the denominator is greater than zero (if the denominator is equal to zero, then based 

on the structure of the fraction, the numerator is also zero. We define 
 

 
    .), 

∑ ∑ ∑            
  

       

          
 

    ∑ ∑ ∑ ̅           
  

       

          
 

              

Let us define variable        
  

 as: 

       
  

            
  

                     

Therefore, Eq. (99) changes to: 

∑ ∑ ∑            
  

       

          
 

 ∑ ∑ ∑ ̅           
  

       

          
 

               

Now, we need to linearize Eq. (100). Constraints (102)-(105) are defined, so that Eq. (100) 

holds: 
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4.4.3 Set-Covering Model 

We now provide a set-covering model in which the goal is to choose a number of routes 

among all possible ones, such that the total cost is minimized, and all the customers’ demands 

are satisfied. Consider the cost associated with each route, which is a subset of all customers with 

demanded products and a single CD. First we define set                         . This 

is the set of all combinations of customers and products, such that those customers have positive 

demands for those products. Now, let   be a non-empty subset of   , and   be the set of all non-

empty subsets of   . Therefore, we have    . Based on Equations (93) to (97), the cost of 

route       is given by 
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                   (                )
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∑ ∑                                

 ∑ ∑                                

 ∑ ∑        ∑          

                   (                )                                   

  
∑ ∑          

                                

  
 

 ∑ ∑               

                        

               

Note that      and     both denote the ordered sequence of indices of the members of   (i.e., 

customers in  ), based solely on  . For example, if Customer 7 is the second customer on the 

route, the ordered sequence of that customer is (2). A given CD is considered as node (0). Also, 

   is the set of customers on route      .  

Let    be the minimum of all       .    is thus the cost of the route assigned to CD   which 

has the minimum cost among all CDs that can potentially be assigned to route  . 

We know that all dummy CDs of a particular CD are in fact the same as the CD itself in terms 

of their distance, travel time and transportation cost between other nodes. Consider two of the 

sub-problems         and         after decomposition. These two sub-problems are identical 

because the two dummy CDs are identical. Therefore, we can ignore index   and decompose the 

objective function only over  , keeping in mind that more than one route is allowed to be 

assigned to each   . Hence, we have     sub-problems: 
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Therefore, for each CD, we find the total cost for route  . Then, we take the minimum of all 

these values and call it   . For all  ,    is calculated. Hence, the set-covering model is as 

follows: 

   {
                             

                                              
 

         ∑     

   

                  

   ∑   

           

                                     

                                       

However, finding all     is almost impossible, especially when the instance becomes 

relatively large. That is why we start solving the set-covering problem with a limited number of 

columns, i.e. with     . Then, after LP relaxation of the set-covering problem, we use the 

dual values of the LP-relaxed problem, and generate columns for the set-covering problem using 

a pricing problem, in each iteration of the column-generation algorithm. In the next section, we 

elaborate more on that algorithm. 

The linear programming relaxation of the set-covering model, considering      instead of 

 , is  

         ∑     

    

                 

   ∑   
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4.4.4 Column-Generation Algorithm 

We have a set-covering model, introduced in the previous section. Consider the dual variables 

of the LP relaxation of the set-covering model (   ). In fact, we assign a dual variable to each of 

the constraints in the set-covering model. These dual variables help us find out if there is still any 

  with nonnegative reduced cost. If yes, we solve the pricing problem using the values of the 

dual variables, and the optimal solution of the pricing problem is added to the set-covering model 

as a new column. If not, that means the optimal solution of the set-covering model is found, and 

the column-generation algorithm stops.  

Now, let us define the pricing problem. Each time, the pricing problem must generate the 

route with a negative reduced cost for us. Therefore, first of all, the pricing problem should be 

written in a way that it produces only one route at each iteration. Second, the objective function 

of the pricing problem should be to minimize the reduced cost, so that the route with the smallest 

reduced cost can be found. The dual variables are in fact the profit of serving customers      , so 

the total saving for route       is 

                                   ∑ ∑∑           
  

  
 

      

           

             

Consider the reduced cost function as  ̅             . The algorithm terminates when 

all the reduced costs are positive. Therefore, using the reduced cost function, the pricing problem 

will be expressed as 
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In addition, as mentioned before, the pricing problem must produce only one route for each 

sub-problem. Therefore, solution to the pricing problem does not necessarily satisfy the demands 

of all customers. As a result, we need to rewrite the constraints corresponding to designing the 

routes, such that each time only one route is generated without covering all the customers. Here, 

we present one set of constraints which is helpful to solve the model with a single product. Also, 

we provide two groups of constraints for a multi-product model. One group is built from only the 

existing set of variables. However, for the second group of constraints, an additional set of 

variables is introduced. 

4.4.4.1 Constraints of the pricing problem for a single-product model 

Apart from constraints (90) to (92) and (101) to (105), the following constraints should be 

added to the single-product model: 
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Constraint (116) indicates that the sum of edges entering   should be equal to the sum of 

edges leaving  . It includes that the degree of customer   can equal zero (demand is not 

necessarily satisfied). Constraint (117) forces the sub-problem to provide at least one route, and 

in addition, makes sure that the degree of the CD is 2. 

4.4.4.2 Constraints of the pricing problem for a multi-product model 

Except for constraint (117), all constraints defined for the single-product model are necessary 

for a multi-product model, too. However, those constraints are not sufficient. We now provide 

two additional sets of constraints. Either can be used in the pricing problem to design multi-

product routes. 

- Constraints without any additional variables: 

For every                                          , we have: 

       
  

  
           
  

  
        

  
                      

       
  

  
           
  

  
         
  

                   

In constraints (118) and (119), if   is delivered on edge      , and    is delivered on edge 

       ,  
        

  
 and  

         
  

 are forced to be equal to 1. This means that if there is an edge       

on the route that product   is going to traverse, and similarly, there is an edge          that on 
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which product    is travelling,   and   must also traverse edges         and      , respectively. 

The reason is that we have only a single route, hence one vehicle. Each product shipped on the 

route must be considered on every edge. 

- Constraints with additional variables: 

For any customer   we have: 

∑∑         
  

 

  

∑∑         
  

  

 ∑∑       
  

  

                  

∑∑       
  

  

  (    )                       

                              

Suppose      for customer  . Then, the left-hand side of Constraint (121) equals zero. This 

means the degree of node   equals zero. Now suppose     . Then, the degree of CD   (left-

hand side of Constraint (120)) should not be greater than the degree of customer  . Based on 

Constraint (116), the degree of each node is an even number. The left-hand side of Constraint 

(120) cannot be less than the right-hand side because for each product, if any edge variable is 

positive, the route corresponding to that product must also be connected to the CD. This follows 

based on the assumption made at the beginning (and Constraint (116) is taking care of it): no 

customer can be connected to two nodes which have greater indices than the customer itself. 

Thus, at one point, the last customer is forced to be connected to the CD. Therefore, the left-hand 

side of Constraint (120) cannot be less than the right-hand side. That constraint must be satisfied 

as an equality. 
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The first set of constraints for the multi-product problem has fewer variables; whereas the 

latter has a smaller number of constraints. Their efficiencies become important when the size of 

the problem instance grows. For large instances, there are so many constraints in the first 

approach that the second becomes much more efficient. 

In the next chapter, we provide some numerical results for the single-product model, and 

discuss the results by changing the ranges of randomly-produced parameters. 
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Chapter 5 

Computational Results 

 

In this chapter, the results of running several instances of the single-product model are 

presented. The Column Generation algorithm is programmed in Matlab R2009b, and Gurobi 

5.6.3 is used as the optimization software. All experiments are done on a system with 16 GB 

RAM and 3.40 GHz CPU. CPU times are in seconds. 

We generate all parameters randomly. Ranges of the parameters are somewhat similar to 

those of Berman and Wang (2006). Let        be the Uniform distribution on the interval      . 

Cartesian coordinates of customers are created from          . Then, coordinates of CDs are 

produced from             , and suppliers are located using             . Euclidean 

distances are calculated between each supplier and CD, CD and customer, and all pairs of 

customers. The transportation cost between nodes is linearly proportional to the corresponding 

distance. 
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The transportation time between any two nodes is equal to the value of the corresponding 

transportation cost divided by 4000. Customer demands are generated from          . The 

capacity of each vehicle is 1000 units.    and    are drawn from        . 

In Table 3, the results of the model with two suppliers are shown. The number of CDs varies 

from 1 to 4; the number of customers in the system is between 2 and 15. In this table, the 

transportation cost between each supplier and CD, and also between each CD and any customer 

equals the corresponding distance. However, the transportation cost between each pair of 

customers is 0.01 times the respective distance. We elaborate on this later. 

For every combination of         in Table 3, an initial 10 replications are run, with the 

average of those replications shown in each row of that table. In addition, results are calculated 

for each set of parameters for the model in which only direct shipment is allowed. The results 

with vehicle routing are compared to the model with direct shipment only, by calculating the 

percentage improvement of the former relative to the latter. Table 3 also presents the CPU times 

and the total number of edges the algorithm needs to explore to find the optimal routes. As can 

be seen in the last column, the cost savings usually increase as the number of customers becomes 

larger. Fig. 5 shows the percentage improvement in cost for different numbers of customers. 

Table 4 exhibits the results for instances with the same sizes as in Table 3, except that the 

number of suppliers is increased to 4. Note that the number of suppliers does not affect the CPU 

time since Theorem 2 helps us to choose the sources of each CD in advance. By increasing the 

number of suppliers, their assignment to CDs can be more flexibly done. Hence, the total 

shipping cost from suppliers to CDs might decrease. However, the additional suppliers do not 

slow down the algorithm. 
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Figure 5 – Improvement of routing over direct shipment when       and       
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Row         
Avg. no. of 

routes 

No. of total 

edges 

Avg. CPU 

Time 

Avg. percentage improvement of routing over 

direct shipment 

1 

1 

2 1.7 6 0.10 4.21 

2 3 1.9 11 0.19 10.90 

3 4 2.1 18 0.27 10.37 

4 5 2.5 27 0.75 10.66 

5 6 2.65 38 2.34 11.81 

6 7 2.41 51 7.14 18.02 

7 8 2.75 66 11.18 15.03 

8 9 3.25 83 20.03 16.05 

9 10 2.77 102 39.31 19.11 

10 11 2.95 123 65.59 20.43 

11 12 2.9 146 133.2 23.00 

12 13 2.92 171 284.1 22.08 

13 14 3 198 533.5 20.00 

14 15 2.85 227 1024 23.97 

15 

2 

2 1.5 10 0.14 6.64 

16 3 1.9 16 0.34 3.41 

17 4 1.66 24 0.87 10.94 

18 5 2.7 34 1.87 7.03 

19 6 2.4 46 4.76 10.09 

20 7 3 60 10.32 16.22 

21 8 3.28 76 19.45 10.09 

22 9 2.6 94 46.41 20.55 

23 10 3.6 114 51.44 16.22 

24 11 3.37 136 103.2 20.41 

25 12 3.15 160 254.1 18.94 

26 13 3.4 186 575.5 24.21 

27 14 3.6 214 716.9 20.56 

28 15 3.55 244 1542 25.85 

Table 3 – Average of results of instances with up to 15 customers and 4 CDs, considering 2 suppliers for 10 replications  

(Continued on next page) 
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Row         
Avg. no. of 

routes 

No. of total 

edges 

Avg. CPU 

Time 

Avg. percentage improvement of routing over 

direct shipment 

29 

3 

2 1.5 14 0.18 1.43 

30 3 1.8 21 0.44 6.70 

31 4 1.8 30 1.14 9.32 

32 5 2.15 41 2.41 11.25 

33 6 2.9 54 6.85 12.09 

34 7 2.95 69 15.07 12.70 

35 8 2.85 86 30.25 19.21 

36 9 3.15 105 49.51 17.85 

37 10 3.07 126 94.18 17.86 

38 11 2.93 149 189.7 19.67 

39 12 3.01 174 347.5 19.26 

40 13 3.05 201 772.0 25.26 

41 14 3.6 230 1162 23.11 

42 15 3.35 261 2464 24.13 

43 

4 

2 1.5 18 0.22 6.08 

44 3 1.7 26 0.59 5.33 

45 4 1.6 36 1.23 13.06 

46 5 2.75 48 4.07 8.75 

47 6 2.8 62 8.29 11.13 

48 7 2.25 78 21.72 19.34 

49 8 2.6 96 42.01 21.03 

50 9 3 116 66.59 17.39 

51 10 2.8 138 123.27 21.15 

52 11 3.5 162 198.72 14.45 

53 12 3.35 188 457.22 22.40 

54 13 3.2 216 990.59 23.56 

55 14 3.8 246 1632 23.92 

56 15 3.75 278 2243 25.07 

Table 3– Average of results of instances with up to 15 customers and 4 CDs, considering 2 suppliers for 10 replications  

(Continued from previous page) 
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Row         
Avg. no. of 

routes 

No. of total 

edges 

Avg. CPU 

Time 

Avg. percentage improvement of routing over 

direct shipment 

1 

1 

2 1.6 8 0.26 0.80 

2 3 1.7 13 0.62 0.59 

3 4 2 20 1.28 0.74 

4 5 1.95 29 2.89 1.03 

5 6 2.5 40 4.45 1.01 

6 7 2.9 53 11.45 0.99 

7 8 2.55 68 22.76 1.27 

8 9 2.46 85 25.43 20.31 

9 10 3.35 104 40.44 19.24 

10 11 3.1 125 70.34 22.55 

11 12 3.05 148 108.17 26.66 

12 13 3.20 173 268.26 26.41 

13 14 3.15 200 467.13 24.48 

14 15 3.12 229 1013.91 27.03 

15 

2 

2 1.6 14 0.42 1.00 

16 3 2 20 1.02 0.23 

17 4 1.8 28 2.64 1.19 

18 5 2.15 38 4.66 1.02 

19 6 2.35 50 10.10 1.05 

20 7 2.7 64 25.66 1.48 

21 8 3.05 80 37.26 1.22 

22 9 2.5 98 42.57 20.49 

23 10 2.9 118 59.94 17.99 

24 11 3.75 140 109.22 18.23 

25 12 3.26 164 270.13 20.91 

26 13 3.45 190 491.38 23.40 

27 14 3.3 218 888.00 26.43 

28 15 3.26 248 1616.94 26.35 

Table 4 – Average of results of instances with up to 15 customers and 4 CDs, considering 2 suppliers for 10 replications 

(Continued on next page) 
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Row         
Avg. no. of 

routes 

No. of total 

edges 

Avg. CPU 

Time 

Avg. percentage improvement of routing over 

direct shipment 

29 

3 

2 1.5 20 0.45 2.46 

30 3 1.2 27 1.35 1.23 

31 4 1.85 36 3.89 0.84 

32 5 2.5 47 8.02 1.32 

33 6 2.5 60 16.73 1.13 

34 7 2.2 75 33.25 1.61 

35 8 3.22 92 59.04 1.22 

36 9 3.2 111 47.28 18.35 

37 10 3.2 132 88.80 23.00 

38 11 3.6 155 139.30 18.89 

39 12 2.86 180 373.04 25.96 

40 13 2.95 207 876.21 24.88 

41 14 3.07 236 1259.06 28.00 

42 15 4.13 267 1512.85 25.72 

43 

4 

2 1.7 26 0.60 0.33 

44 3 1.6 34 1.79 0.77 

45 4 1.8 44 5.96 1.46 

46 5 1.9 56 12.00 1.32 

47 6 2.15 70 20.84 1.19 

48 7 2.65 86 40.09 1.07 

49 8 2.26 104 73.47 1.93 

50 9 2.65 124 94.38 23.96 

51 10 3.09 146 133.55 21.56 

52 11 2.99 170 244.63 22.75 

53 12 3.3 196 406.89 23.46 

54 13 3.25 224 974.44 26.38 

55 14 3.78 254 1489.53 24.68 

56 15 2.91 286 2964.76 27.20 

Table 4– Average of results of instances with up to 15 customers and 4 CDs, considering 2 suppliers for 10 replications 

(Continued from previous page) 



65 

 

We stated at the start of this chapter that the transportation cost between every two customers 

is a multiple of the corresponding distance. Table 5 shows the results of running the algorithm 

for different values of that multiple. When the multiple is relatively high, meaning that the 

transportation cost per unit distance of edges connecting customers exceeds the unit 

transportation cost of other edges, direct shipment is preferable to routing. However, routing 

becomes more advantageous for a lower multiple.  

This can be interpreted as follows. Direct shipment to clusters of customers that are close to 

CDs, costs less than routing. Routing is chosen as the shipping strategy for the customers that are 

further from CDs. The reason is the important role of pipeline inventory cost. This cost is 

considered on all edges that are to be traversed until the shipment is delivered to its destination.  

If the transportation time (which is a multiple of transportation cost) is high, then direct 

shipment seems to be more beneficial. Fig. 6 (for 10 customers and 5 CDs) shows how the 

number of routes increases with an increase in the transportation costs of edges connecting pairs 

of customers. In this sensitivity analysis, no other parameters were varied. 
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Row Multiple of     No. of routes CPU Time 

1 2 10 32.49 

2 1.6 10 33.55 

3 1.2 10 35.97 

4 1 10 38.06 

5 0.8 10 42.41 

6 0.6 7 83.66 

7 0.4 5 121.3 

8 0.2 4 129.1 

9 0.19 4 129.4 

10 0.15 4 201.0 

11 0.11 4 170.8 

12 0.07 3 161.7 

13 0.03 2 234.8 

14 0 2 113.9 

Table 5 – Variation of number of routes with multiple of     

 

Figure 6 – Variation of number of routes with multiple of     
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to keep lower levels of inventory at the customers. Therefore, the quantities delivered to 

customers in each visit should become smaller. Hence, larger numbers of customers are visited 

on each route, and the number of routes decreases. Fig. 7 also shows the results of Table 6. 

Row 
  

  
 No. of routes CPU Time 

1 10 7 70.12 

2 7 7 74.41 

3 4 7 96.66 

4 1 7 83.88 

5 0.8 7 80.38 

6 0.6 7 95.89 

7 0.4 6 78.14 

8 0.2 6 74.59 

9 0 5 63.44 

Table 6 – Variation of number of routes with 
  

  
 

 

 

Figure 7 – Variation of number of routes with 
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model is an LP relaxation, 90% of the results are integer. Each instances of Table 7 are run only 

once, and they were all integer. In addition, instances with up to 9 customers and 4 CDs resulted 

in integer solutions. Also, for 80% of the instances with 10 to 15 customers and up to 4 CDs 

were integer. 

 

Row             No. of routes CPU Time No. of edges 

1 15 5 1 3 3632 290 

2 20 5 1 4 74767 485 

3 25 1 1 4 184433 626 

Table 7 – Results of larger instances 
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Chapter 6  

Conclusions and Future Work 

 

In this thesis, the design of minimum-cost routes with optimal shipment frequencies was 

considered, for the problem in which suppliers satisfy customer demands for several product 

types through a set of CDs. 

In the objective function, transportation cost and pipeline inventory cost of the whole supply 

chain, plus inventory carrying cost at the customers, were taken into account. Our goal was to 

minimize the total cost. As expected, in a good solution, reasonable tradeoffs are found between 

those inventory levels and the costs of shipping (transportation + pipeline inventories).  

To the best of our knowledge, pipeline inventory cost has not been addressed in the literature 

on IRP (the Inventory Routing Problem). In addition, the idea of shipment frequencies 

introduced by Berman and Wang (2006) for a supply chain with direct shipment strategy was not 

applied to the supply chains with vehicle routing.  
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We presented a node-based formulation for the problem that we had defined. We 

demonstrated that each CD can be treated as a set of “dummy” CDs, each of which can be 

assigned to at most one route. This helped to formulate the model as a nonlinear mixed integer 

programming problem, in which the cost of each route is considered separately. 

The model was solved using a column generation algorithm. This was after demonstrating 

some analytical results that enabled us to rewrite the model as an edge-based formulation. We 

linearized the nonlinear objective function by using those results and the decomposition of the 

objective function over each route. Based on the preceding result, we presented a pricing 

problem that produced a single route at each iteration of the column-generation algorithm. 

In addition, we redefined the constraints after writing the objective function of the pricing 

problem, because those constraints needed to be defined such that only one single route could be 

built connecting a sub-set of customers to a given CD. A set-covering model was presented to 

choose the optimal (least-cost) routes generated by the pricing problem.  

We formulated our problem for both single-product and multi-product scenarios. Results for a 

single product model were presented in Chapter 5. We observed that the proposed algorithm was 

able to provide an integer exact solution for 90% of the instances considered. Results for all 

instances with a number of customers smaller than 10 were integer. Also, 80% of the results for 

instances with 10 to 15 customers turned out to be integer. 

Table 7 presented the larger instances all with 15 or more customers. Each instance had its 

own set of (random) cost parameters; the model was run just for that single case. The 

corresponding results were all integer. The largest instance that we could solve to optimality had 
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626 edges. We were able to solve the problems with up to 300 edges within only one hour of 

CPU time. 

We demonstrated that routing is preferred to direct shipment when customers are relatively far 

from CDs because of the high pipeline inventory cost of direct shipment. In addition there are 

fewer routes for a smaller ratio 
  

  
. This is because, as the objective function tries to decrease the 

inventory carrying cost at the customers, the number of customers on each route increases. The 

quantity delivered to each customer at each visit thus decreases. 

For future work, we can consider removing the assumption of connecting the customers in an 

ascending order. This will permit more general routing policies. A greedy heuristic could be 

provided to sort the customers, such that solution of the column-generation algorithm would be 

close to optimal. One way to sort the customers before applying the column-generation algorithm 

is to solve a Travelling Salesman Problem (TSP) for all the customers, and continue with the 

resulting sequence. This might not give the exact optimal solution since the corresponding 

sequence might not be optimal. However, it can give a good insight on the ordering of 

customers. In addition, a new index can be added to decision variables. That index would 

correspond to edges, and would show the place of each edge on a particular route. In this case, 

the algorithm could result in an exact optimal solution, assuming that instances of the size we 

wish to solve are within the algorithm’s capability. Naturally, optimality would have to be 

proven. 

Based on Fig. 5, cost savings mostly increase for increasing size of the problem instances. 

However, that increase is not monotonic. This could be due to randomness of the parameters of 

the problem. We took the average of 10 replications for each instance-size. Running more 
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replications and introducing a proper confidence interval will be helpful to have the graph 

represent the more-correct cost savings, which we believe will be closer to monotonic. 

In our computational results, we compare two scenarios. These have direct shipments from 

CDs to customers, and employ routes originating only from CDs, respectively. As future work, 

we could also include shipments in which routes originate at the suppliers, and visit customers 

without going through CDs.  

We initialized the set-covering model with a set of columns regarding direct shipment to all 

customers from random CDs. An algorithm could be introduced to find a better initial feasible 

solution for the set-covering model. Such a solution generator would help to find the optimal 

solution with fewer column generation iterations, and make the whole optimization process 

faster. 

 To solve those instances that result in non-integer solutions for the set-covering model, a 

branch-and-price algorithm would be helpful. Alternatively, a proper approximation algorithm, 

such as randomized rounding proposed by Raghavan and Tompson (1987), and improved by 

Slavik (1997) and Srinivasan (1995) could be developed. 

This model can be extended to a multi-period problem, where customers’ inventories in each 

period are taken into account. Capacitated CDs, availabilities of the suppliers, and stochastic 

demands at customers can also be considered. Locations of CDs could also be interesting to be 

considered as decision variables. This is because, as we observed, those CD locations play an 

important role in choosing a proper shipment strategy. 
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