5 research outputs found

    A Branch-and-Price Algorithm for Capacitated Arc Routing Problem with Flexible Time Windows

    No full text
    International audienceIn this paper we study Capacitated Arc Routing Problem with Flexible Time Windows where violating a time windows implies some extra cost. We propose a branch-and-price algorithm due to the Dantzig-Wolfe decomposition. The subproblem is a non-elementary capacitated shortest path problem. Experimental results are presented on the instances up to 40 nodes and 69 required edges

    Arc routing problems: A review of the past, present, and future

    Full text link
    [EN] Arc routing problems (ARPs) are defined and introduced. Following a brief history of developments in this area of research, different types of ARPs are described that are currently relevant for study. In addition, particular features of ARPs that are important from a theoretical or practical point of view are discussed. A section on applications describes some of the changes that have occurred from early applications of ARP models to the present day and points the way to emerging topics for study. A final section provides information on libraries and instance repositories for ARPs. The review concludes with some perspectives on future research developments and opportunities for emerging applicationsThis research was supported by the Ministerio de Economia y Competitividad and Fondo Europeo de Desarrollo Regional, Grant/Award Number: PGC2018-099428-B-I00. The Research Council of Norway, Grant/Award Numbers: 246825/O70 (DynamITe), 263031/O70 (AXIOM).Corberån, Á.; Eglese, R.; Hasle, G.; Plana, I.; Sanchís Llopis, JM. (2021). Arc routing problems: A review of the past, present, and future. Networks. 77(1):88-115. https://doi.org/10.1002/net.21965S8811577

    Algoritmos e formulaçÔes matemåticas para problemas de roteamento em arcos

    Get PDF
    Orientador: FĂĄbio Luiz UsbertiTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Problemas de roteamento em arcos tĂȘm por objetivo determinar rotas de custo mĂ­nimo que visitam um subconjunto de arcos de um grafo, com uma ou mais restriçÔes adicionais. Esta tese estuda trĂȘs problemas NP-difĂ­ceis de roteamento em arcos: (1) o problema de roteamento em arcos capacitado (CARP); (2) o problema de roteamento em arcos capacitado e aberto (OCARP); e (3) o problema do carteiro chinĂȘs com cobertura (CCPP). Apresentamos formulaçÔes matemĂĄticas e mĂ©todos exatos e heurĂ­sticos para tratar computacionalmente esses problemas: (i) uma heurĂ­stica construtiva gulosa e randomizada Ă© proposta para o CARP; (ii) uma metaheurĂ­stica de algoritmos genĂ©ticos hĂ­brido e dois mĂ©todos de limitantes inferiores por programação linear inteira, um branch-and-cut e um baseado em redes de fluxos, sĂŁo propostos para o OCARP; e (iii) um mĂ©todo exato branch-and-cut com desigualdades vĂĄlidas e uma heurĂ­stica construtiva sĂŁo propostos para o CCPP. Extensivos experimentos computacionais utilizando instĂąncias de benchmark foram executados para demonstrar o desempenho dos mĂ©todos propostos em relação aos mĂ©todos da literatura, considerando tanto a qualidade das soluçÔes obtidas quanto o tempo de processamento. Nossos resultados mostram que os mĂ©todos propostos sĂŁo estado da arte. Os problemas estudados apresentam aplicaçÔes prĂĄticas relevantes: o CARP tem aplicaçÔes em coleta de lixo urbano e remoção de neve de estradas; o OCARP tem aplicaçÔes em roteamento de leituristas e na definição de caminhos de corte em chapas metĂĄlicas; e o CCPP tem aplicaçÔes em roteamento de leituristas com o uso de tecnologia wireless. A solução desses problemas remete Ă  diminuição de custos logĂ­sticos, melhorando a competitividade das empresasAbstract: Arc routing problems aim to find minimum cost routes that visit a subset of arcs of a graph, with one or more side constraints. This thesis studies three NP-hard arc routing problems: (1) the capacitated arc routing problem (CARP); (2) the open capacitated arc routing problem (OCARP); and (3) the covering Chinese postman problem (CCPP). We present mathematical formulations and heuristic and exact methods to computationally solve these problems: (i) a greedy and randomized constructive heuristic is proposed for the CARP; (ii) a hybrid genetic algorithm metaheuristic and two linear integer programming lower bound methods, one based on branch-and-cut and one based on flow networks, are proposed for the OCARP; and (iii) an exact branch-and-cut method with valid inequalities and a constructive heuristic are proposed for the CCPP. Extensive computational experiments using benchmark instances were performed to demonstrate the performance of the proposed methods in comparison to the previous methods, regarding both quality of solutions and processing time. Our results show that the proposed methods are state-of-the-art. The studied problems have many relevant practical applications: the CARP has applications on urban waste collection and snow removal; the OCARP has applications on the routing of meter readers and the cutting of metal sheets; and last, the CCPP has applications on automated meter readers routing. The solution of these problems leads to the reduction of logistics costs, improving businesses competitivenessDoutoradoCiĂȘncia da ComputaçãoDoutor em CiĂȘncia da Computação2016/00315-0FAPES

    Arc Routing Problems for Road Network Maintenance

    Get PDF
    RÉSUMÉ : Cette thĂšse prĂ©sente deux problĂšmes rencontrĂ©s dans l’entretien des rĂ©seaux routiers, soit la surveillance des rĂ©seaux routiers pour la dĂ©tection de verglas sur la chaussĂ©e et la reprogrammation des itinĂ©raires pour les activitĂ©s de dĂ©neigement et d’épandage de sel. Nous reprĂ©sentons ces problĂšmes par des modĂšles de tournĂ©es sur les arcs. La dĂ©pendance aux moments et la nature dynamique sont des caractĂ©ristiques propres de ces problĂšmes, par consĂ©quence le cas de surveillance des rĂ©seaux routiers est modĂ©lisĂ© comme un problĂšme de postier rural avec fenĂȘtres-horaires (RPPTW), tandis que le cas de la reprogrammation utilise des modĂšles obtenus Ă  partir des formulations de problĂšmes de tournĂ©es sur les arcs avec capacitĂ©. Dans le cas du problĂšme de surveillance, une patrouille vĂ©rifie l’état des chemins et des autoroutes, elle doit principalement dĂ©tecter le verglas sur la chaussĂ©e dans le but d’assurer de bonnes conditions aux chauffeurs et aux piĂ©tons. Étant donnĂ© un rĂ©seau routier et des prĂ©visions mĂ©tĂ©o, le problĂšme consiste Ă  crĂ©er une tournĂ©e qui permette de dĂ©tecter opportunĂ©ment le verglas sur les rues et les routes. L’objectif poursuivi consiste Ă  minimiser le coĂ»t de cette opĂ©ration. En premier, on prĂ©sente trois formulations basĂ©es sur la programmation linĂ©aire en nombres entiers pour le problĂšme de surveillance des rĂ©seaux qui dĂ©pend du moment et deux mĂ©thodes de rĂ©solution: un algorithme de coupes et un algorithme heuristique appelĂ© adaptive large neighborhood search (ALNS). La mĂ©thode exacte inclut des inĂ©quations valides tirĂ©es du problĂšme du voyageur de commerce avec fenĂȘtres-horaires et aussi du problĂšme de voyageur du commerce avec contraintes de prĂ©cĂ©dence. La mĂ©thode heuristique considĂšre deux phases: en premier, on trouve une solution initiale et aprĂšs dans la deuxiĂšme phase, l’algorithme essaie d’amĂ©liorer la solution initiale en utilisant sept heuristiques de destruction et deux heuristiques de rĂ©paration choisies au hasard. La performance des heuristiques est Ă©valuĂ©e pendant les itĂ©rations. Une meilleure performance correspond Ă  une plus grande probabilitĂ© de choisir une heuristique. Plusieurs tests ont Ă©tĂ© faits sur deux ensembles d’exemplaires de problĂšmes. Les rĂ©sultats obtenus montrent que l’algorithme de coupes est capable de rĂ©soudre des rĂ©seaux avec 104 arĂȘtes requises et des fenĂȘtres-horaires structurĂ©es par tranches horaires ; l’algorithme peut aussi rĂ©soudre des rĂ©seaux avec 45 arĂȘtes requises et des fenĂȘtres-horaires structurĂ©es pour chaque arĂȘte requise. Pour l’algorithme ALNS, diffĂ©rentes versions de l’algorithme sont comparĂ©es. Les rĂ©sultats montrent que cette mĂ©thode est efficace parce qu’elle est capable de rĂ©soudre Ă  l’optimalitĂ© 224 des 232 exemplaires et de rĂ©duire le temps de calcul significativement pour les exemplaires les plus difficiles. La derniĂšre partie de la thĂšse introduit le problĂšme de la reprogrammation de tournĂ©es sur les arcs avec capacitĂ© (RCARP), lequel permet de modĂ©liser la reprogrammation des itinĂ©raires aprĂšs une panne d’un vĂ©hicule lors de la phase d’exĂ©cution d’un plan initial des activitĂ©s de dĂ©neigement ou d’épandage de sel. Le planificateur doit alors modifier le plan initial rapidement et reprogrammer les vĂ©hicules qui restent pour finir les activitĂ©s. Dans ce cas, l’objectif poursuivi consiste Ă  minimiser le coĂ»t d’opĂ©ration et le coĂ»t de perturbation. La distance couverte par les vĂ©hicules correspond au coĂ»t d’opĂ©ration, cependant une nouvelle mĂ©trique est dĂ©veloppĂ©e pour mesurer le coĂ»t de perturbation. Les coĂ»ts considĂ©rĂ©s sont des objectifs en conflit. On analyse quatre politiques Ă  la phase de re-routage en utilisant des formulations de programmation linĂ©aire en nombres entiers. On propose une solution heuristique comme mĂ©thode pour rĂ©soudre le RCARP quand les coĂ»ts d’opĂ©ration et de perturbation sont minimisĂ©s en mĂȘme temps et quand une rĂ©ponse rapide est nĂ©cessaire. La mĂ©thode consiste Ă  fixer une partie de l’itinĂ©raire initial et aprĂšs Ă  modifier seulement les itinĂ©raires des vĂ©hicules les plus proches de la zone de l’interruption de la tournĂ©e du vĂ©hicule dĂ©faillant. La mĂ©thode a Ă©tĂ© testĂ©e sur des exemplaires obtenus d’un rĂ©seau rĂ©el. Nos tests indiquent que la mĂ©thode peut rĂ©soudre rapidement des exemplaires avec 88 arĂȘtes requises et 10 vĂ©hicules actifs aprĂšs la panne d’un vĂ©hicule. En conclusion, la principale contribution de cette thĂšse est de prĂ©senter des modĂšles de tournĂ©es sur les arcs et de proposer des mĂ©thodes de rĂ©solution d’optimisation qui incluent la dĂ©pendance aux temps et l’aspect dynamique. On propose des modĂšles et des mĂ©thodes pour rĂ©soudre le RPPTW, et on prĂ©sente des rĂ©sultats pour ce problĂšme. On introduit pour la premiĂšre fois le RCARP. Trois articles correspondant aux trois principaux chapitres ont Ă©tĂ© acceptĂ©s ou soumis Ă  des revues avec comitĂ© de Lecture: “The rural postman problem with time windows” acceptĂ© dans Networks, “ALNS for the rural postman problem with time windows” soumis Ă  Networks, and “The rescheduling capacitated arc routing problem” soumis Ă  International Transactions in Operational Research.----------ABSTRACT : This dissertation addresses two problems related to road network maintenance: the road network monitoring of black-ice and the rescheduling of itineraries for snow plowing and salt spreading operations. These problems can naturally be represented using arc routing models. Timing-sensitive and dynamic nature are inherent characteristics of these problems, therefore the road network monitoring is modeled as a rural postman problem with time windows (RPPTW) and in the rescheduling case, models based on capacitated arc routing formulations are suggested for the rerouting phase. The detection of black-ice on the roads is carried out by a patrol to ensure safety conditions for drivers and pedestrians. Specific meteorological conditions cause black-ice on the roads; therefore the patrol must design a route covering part of the network in order to timely detect the black-ice according to weather forecasts. We look for minimum-cost solutions that satisfy the timing constraints. At first, three formulations based on mixed integer linear programming are presented for the timing-sensitive road network monitoring and two solution approaches are proposed: a cutting plane algorithm and an adaptive large neighborhood search (ALNS) algorithm. The exact method includes valid inequalities from the traveling salesman problem (TSP) with time windows and from the precedence constrained TSP. The heuristic method consists of two phases: an initial solution is obtained, and then in the second phase the ALNS method tries to improve the initial solution using seven removal and two insertion heuristics. The performance of the heuristics is evaluated during the iterations, and therefore the heuristics are selected depending on their performance (with higher probability for the better ones). Several tests are done on two sets of instances. The computational experiments performed show that the cutting plane algorithm is able to solve instances with up to 104 required edges and with time windows structured by time slots, and problems with up to 45 required edges and time windows structured by each required edge. For the ALNS algorithm, several versions of the algorithm are compared. The results show that this approach is efficient, solving to optimality 224 of 232 instances and significantly reducing the computational time on the hardest instances. The last part of the dissertation introduces the rescheduling capacitated arc routing problem (RCARP), which models the rescheduling of itineraries after a vehicle failure happens in the execution of an initial plan of snow plowing or salt spreading operations. A dispatcher must quickly adjust the remaining vehicles and modify the initial plan in order to complete the operations. In this case we look for solutions that minimize operational and disruption costs. The traveled distance represents the operational cost, and a new metric is discussed as disruption cost. The concerned objectives are in conflict. Four policies are analyzed in the rerouting phase using mixed integer linear programming formulations. A heuristic solution is developed to solve the RCARP when operational and disruption costs are minimized simultaneously and a quick response is needed. The idea is to fix part of the initial itinerary and only modify the itinerary of vehicles closer to the failure zone. The method is tested on a set of instances generated from a real network. Our tests indicate that the method can solve instances with up to 88 required edges and 10 active vehicles after the vehicle breakdown. In short the main contribution of this dissertation is to present arc routing models and optimization solution techniques that consider timing-sensitive and dynamic aspects. Formulations and solution methods with computational results are given for the RPPTW, and the RCARP is studied for the first time here. Three articles corresponding to the main three chapters have been accepted or submitted to peer review journals: “The rural postman problem with time windows” accepted in Networks, “ALNS for the rural postman problem with time windows” submitted to Networks, and “The rescheduling capacitated arc routing problem” submitted to International Transactions in Operational Research
    corecore