26 research outputs found

    Interval total colorings of graphs

    Full text link
    A total coloring of a graph GG is a coloring of its vertices and edges such that no adjacent vertices, edges, and no incident vertices and edges obtain the same color. An \emph{interval total tt-coloring} of a graph GG is a total coloring of GG with colors 1,2,.˙.,t1,2,\...,t such that at least one vertex or edge of GG is colored by ii, i=1,2,.˙.,ti=1,2,\...,t, and the edges incident to each vertex vv together with vv are colored by dG(v)+1d_{G}(v)+1 consecutive colors, where dG(v)d_{G}(v) is the degree of the vertex vv in GG. In this paper we investigate some properties of interval total colorings. We also determine exact values of the least and the greatest possible number of colors in such colorings for some classes of graphs.Comment: 23 pages, 1 figur

    Fractional total colourings of graphs of high girth

    Get PDF
    Reed conjectured that for every epsilon>0 and Delta there exists g such that the fractional total chromatic number of a graph with maximum degree Delta and girth at least g is at most Delta+1+epsilon. We prove the conjecture for Delta=3 and for even Delta>=4 in the following stronger form: For each of these values of Delta, there exists g such that the fractional total chromatic number of any graph with maximum degree Delta and girth at least g is equal to Delta+1

    Distributed (Δ+1)(\Delta+1)-Coloring in Sublogarithmic Rounds

    Full text link
    We give a new randomized distributed algorithm for (Δ+1)(\Delta+1)-coloring in the LOCAL model, running in O(logΔ)+2O(loglogn)O(\sqrt{\log \Delta})+ 2^{O(\sqrt{\log \log n})} rounds in a graph of maximum degree~Δ\Delta. This implies that the (Δ+1)(\Delta+1)-coloring problem is easier than the maximal independent set problem and the maximal matching problem, due to their lower bounds of Ω(min(lognloglogn,logΔloglogΔ))\Omega \left( \min \left( \sqrt{\frac{\log n}{\log \log n}}, \frac{\log \Delta}{\log \log \Delta} \right) \right) by Kuhn, Moscibroda, and Wattenhofer [PODC'04]. Our algorithm also extends to list-coloring where the palette of each node contains Δ+1\Delta+1 colors. We extend the set of distributed symmetry-breaking techniques by performing a decomposition of graphs into dense and sparse parts
    corecore