7 research outputs found

    CellSecure: Securing Image Data in Industrial Internet-of-Things via Cellular Automata and Chaos-Based Encryption

    Full text link
    In the era of Industrial IoT (IIoT) and Industry 4.0, ensuring secure data transmission has become a critical concern. Among other data types, images are widely transmitted and utilized across various IIoT applications, ranging from sensor-generated visual data and real-time remote monitoring to quality control in production lines. The encryption of these images is essential for maintaining operational integrity, data confidentiality, and seamless integration with analytics platforms. This paper addresses these critical concerns by proposing a robust image encryption algorithm tailored for IIoT and Cyber-Physical Systems (CPS). The algorithm combines Rule-30 cellular automata with chaotic scrambling and substitution. The Rule 30 cellular automata serves as an efficient mechanism for generating pseudo-random sequences that enable fast encryption and decryption cycles suitable for real-time sensor data in industrial settings. Most importantly, it induces non-linearity in the encryption algorithm. Furthermore, to increase the chaotic range and keyspace of the algorithm, which is vital for security in distributed industrial networks, a hybrid chaotic map, i.e., logistic-sine map is utilized. Extensive security analysis has been carried out to validate the efficacy of the proposed algorithm. Results indicate that our algorithm achieves close-to-ideal values, with an entropy of 7.99 and a correlation of 0.002. This enhances the algorithm's resilience against potential cyber-attacks in the industrial domain

    A Multilayer Approach for Intrusion Detection with Lightweight Multilayer Perceptron and LSTM Deep Learning Models

    Get PDF
    Intrusion detection is essential in the field of cybersecurity for protecting networks and computer systems from nefarious activity. We suggest a novel multilayer strategy that combines the strength of the Lightweight Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) deep learning models in order to improve the precision and effectiveness of intrusion detection.The initial layer for extraction of features and representation is the Lightweight MLP. Its streamlined architecture allows for quick network data processing while still maintaining competitive performance. The LSTM deep learning model, which is excellent at identifying temporal correlations and patterns in sequential data, receives the extracted features after that.Our multilayer technique successfully manages the highly dimensional and dynamic nature of data from networks by merging these two models. We undertake extensive tests on benchmark datasets, and the outcomes show that our strategy performs better than conventional single-model intrusion detection techniques.The suggested multilayer method also demonstrates outstanding efficiency, which makes it particularly ideal for real-time intrusion detection in expansive network environments. Our multilayer approach offers a strong and dependable solution for identifying and reducing intrusions, strengthening the security position of computer systems and networks as cyber threats continue to advance

    An Improved Method for Hiding Text in Image Using Header Image

    Get PDF
    The necessities of steganography methods for hiding secret message into images have been ascend. Thereby, this study is to generate a practical steganography procedure to hide text into image. This operation allows the user to provide the system with both text and cover image, and to find a resulting image that comprises the hidden text inside. The suggested technique is to hide a text inside the header formats of a digital image. Least Significant Bit (LSB) method to hide the message or text, in order to keep the features and characteristics of the original image are used. A new method is applied via using the whole image (header formats) to hide the image. From the experimental results, suggested technique that gives a higher embedding of several stages of complexity. Also, LSB method via using the whole image is to increase the security and robustness of the proposed method as compared to state-of the-art methods

    A Blockchain-Based Secure Image Encryption Scheme for the Industrial Internet of Things

    No full text
    Smart cameras and image sensors are widely used in industrial processes, from the designing to the quality checking of the final product. Images generated by these sensors are at continuous risk of disclosure and privacy breach in the industrial Internet of Things (IIoT). Traditional solutions to secure sensitive data fade in IIoT environments because of the involvement of third parties. Blockchain technology is the modern-day solution for trust issues and eliminating or minimizing the role of the third party. In the context of the IIoT, we propose a permissioned private blockchain-based solution to secure the image while encrypting it. In this scheme, the cryptographic pixel values of an image are stored on the blockchain, ensuring the privacy and security of the image data. Based on the number of pixels change rate (NPCR), the unified averaged changed intensity (UACI), and information entropy analysis, we evaluate the strength of proposed image encryption algorithm ciphers with respect to differential attacks. We obtained entropy values near to an ideal value of 8, which is considered to be safe from brute force attack. Encrypted results show that the proposed scheme is highly effective for data leakage prevention and security

    Blockchain for secured IoT and D2D applications over 5G cellular networks : a thesis by publications presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer and Electronics Engineering, Massey University, Albany, New Zealand

    Get PDF
    Author's Declaration: "In accordance with Sensors, SpringerOpen, and IEEE’s copyright policy, this thesis contains the accepted and published version of each manuscript as the final version. Consequently, the content is identical to the published versions."The Internet of things (IoT) is in continuous development with ever-growing popularity. It brings significant benefits through enabling humans and the physical world to interact using various technologies from small sensors to cloud computing. IoT devices and networks are appealing targets of various cyber attacks and can be hampered by malicious intervening attackers if the IoT is not appropriately protected. However, IoT security and privacy remain a major challenge due to characteristics of the IoT, such as heterogeneity, scalability, nature of the data, and operation in open environments. Moreover, many existing cloud-based solutions for IoT security rely on central remote servers over vulnerable Internet connections. The decentralized and distributed nature of blockchain technology has attracted significant attention as a suitable solution to tackle the security and privacy concerns of the IoT and device-to-device (D2D) communication. This thesis explores the possible adoption of blockchain technology to address the security and privacy challenges of the IoT under the 5G cellular system. This thesis makes four novel contributions. First, a Multi-layer Blockchain Security (MBS) model is proposed to protect IoT networks while simplifying the implementation of blockchain technology. The concept of clustering is utilized to facilitate multi-layer architecture deployment and increase scalability. The K-unknown clusters are formed within the IoT network by applying a hybrid Evolutionary Computation Algorithm using Simulated Annealing (SA) and Genetic Algorithms (GA) to structure the overlay nodes. The open-source Hyperledger Fabric (HLF) Blockchain platform is deployed for the proposed model development. Base stations adopt a global blockchain approach to communicate with each other securely. The quantitative arguments demonstrate that the proposed clustering algorithm performs well when compared to the earlier reported methods. The proposed lightweight blockchain model is also better suited to balance network latency and throughput compared to a traditional global blockchain. Next, a model is proposed to integrate IoT systems and blockchain by implementing the permissioned blockchain Hyperledger Fabric. The security of the edge computing devices is provided by employing a local authentication process. A lightweight mutual authentication and authorization solution is proposed to ensure the security of tiny IoT devices within the ecosystem. In addition, the proposed model provides traceability for the data generated by the IoT devices. The performance of the proposed model is validated with practical implementation by measuring performance metrics such as transaction throughput and latency, resource consumption, and network use. The results indicate that the proposed platform with the HLF implementation is promising for the security of resource-constrained IoT devices and is scalable for deployment in various IoT scenarios. Despite the increasing development of blockchain platforms, there is still no comprehensive method for adopting blockchain technology on IoT systems due to the blockchain's limited capability to process substantial transaction requests from a massive number of IoT devices. The Fabric comprises various components such as smart contracts, peers, endorsers, validators, committers, and Orderers. A comprehensive empirical model is proposed that measures HLF's performance and identifies potential performance bottlenecks to better meet blockchain-based IoT applications' requirements. The implementation of HLF on distributed large-scale IoT systems is proposed. The performance of the HLF is evaluated in terms of throughput, latency, network sizes, scalability, and the number of peers serviceable by the platform. The experimental results demonstrate that the proposed framework can provide a detailed and real-time performance evaluation of blockchain systems for large-scale IoT applications. The diversity and the sheer increase in the number of connected IoT devices have brought significant concerns about storing and protecting the large IoT data volume. Dependencies of the centralized server solution impose significant trust issues and make it vulnerable to security risks. A layer-based distributed data storage design and implementation of a blockchain-enabled large-scale IoT system is proposed to mitigate these challenges by using the HLF platform for distributed ledger solutions. The need for a centralized server and third-party auditor is eliminated by leveraging HLF peers who perform transaction verification and records audits in a big data system with the help of blockchain technology. The HLF blockchain facilitates storing the lightweight verification tags on the blockchain ledger. In contrast, the actual metadata is stored in the off-chain big data system to reduce the communication overheads and enhance data integrity. Finally, experiments are conducted to evaluate the performance of the proposed scheme in terms of throughput, latency, communication, and computation costs. The results indicate the feasibility of the proposed solution to retrieve and store the provenance of large-scale IoT data within the big data ecosystem using the HLF blockchain

    Strategies for Integrating the Internet of Things in Educational Institutions

    Get PDF
    The introduction of the Internet of Things (IoT) into educational institutions has necessitated the integration of IoT devices in the information technology (IT) infrastructural environment of educational institutions. Many IT leaders at educational institutions, however, lack strategies for integrating and deploying IoT devices in their institutions, which has resulted in numerous security breaches. The purpose of this study was to explore security strategies adopted by IT administrators to prevent data breaches resulting from the integration of IoT devices in their educational institutions. The diffusion of innovations theory served as the conceptual framework for this qualitative multiple case study. Eleven IT leaders in 11 public K–12 educational institutions, who had successfully integrated IoT in their educational institutions in the United States Midwest region, were interviewed. Thematic analysis was the data analysis strategy. The 3 major themes that emerged were (a) organizational breach prevention, (b) infrastructure management—external to IT, and (c) policy management—internal to IT. A key recommendation is for IT leaders to develop strategies to harness the efficiencies and stabilities that exist during the integration of IoT devices in their educational institutions. The implications for social change include the potential for securely transforming the delivery of education to students and ensuring the safety of academic personnel by identifying strategies that IT leaders can use to securely integrate IoT devices in educational settings

    Expanding the Horizons of Manufacturing: Towards Wide Integration, Smart Systems and Tools

    Get PDF
    This research topic aims at enterprise-wide modeling and optimization (EWMO) through the development and application of integrated modeling, simulation and optimization methodologies, and computer-aided tools for reliable and sustainable improvement opportunities within the entire manufacturing network (raw materials, production plants, distribution, retailers, and customers) and its components. This integrated approach incorporates information from the local primary control and supervisory modules into the scheduling/planning formulation. That makes it possible to dynamically react to incidents that occur in the network components at the appropriate decision-making level, requiring fewer resources, emitting less waste, and allowing for better responsiveness in changing market requirements and operational variations, reducing cost, waste, energy consumption and environmental impact, and increasing the benefits. More recently, the exploitation of new technology integration, such as through semantic models in formal knowledge models, allows for the capture and utilization of domain knowledge, human knowledge, and expert knowledge toward comprehensive intelligent management. Otherwise, the development of advanced technologies and tools, such as cyber-physical systems, the Internet of Things, the Industrial Internet of Things, Artificial Intelligence, Big Data, Cloud Computing, Blockchain, etc., have captured the attention of manufacturing enterprises toward intelligent manufacturing systems
    corecore