6 research outputs found

    Balanced generalized weighing matrices and their applications

    Get PDF
    Balanced generalized weighing matrices include well-known classical combinatorial objects such as Hadamard matrices and conference matrices; moreover, particular classes of BGW -matrices are equivalent to certain relative difference sets. BGW -matrices admit an interesting geometrical interpretation, and in this context they generalize notions like projective planes admitting a full elation or homology group. After surveying these basic connections, we will focus attention on proper BGW -matrices; thus we will not give any systematic treatment of generalized Hadamard matrices, which are the subject of a large area of research in their own right. In particular, we will discuss what might be called the classical parameter series. Here the nicest examples are closely related to perfect codes and to some classical relative difference sets associated with affine geometries; moreover, the matrices in question can be characterized as the unique (up to equivalence) BGW -matrices for the given parameters with minimum q-rank.One can also obtain a wealth of monomially inequivalent examples and deter  mine the q-ranks of all these matrices by exploiting a connection with linear shift register sequences

    Implementing Brouwer's database of strongly regular graphs

    Full text link
    Andries Brouwer maintains a public database of existence results for strongly regular graphs on n≤1300n\leq 1300 vertices. We implemented most of the infinite families of graphs listed there in the open-source software Sagemath, as well as provided constructions of the "sporadic" cases, to obtain a graph for each set of parameters with known examples. Besides providing a convenient way to verify these existence results from the actual graphs, it also extends the database to higher values of nn.Comment: 18 pages, LaTe

    Divisible Design Graphs

    Get PDF
    AMS Subject Classification: 05B05, 05E30, 05C50.Strongly regular graph;Group divisible design;Deza graph;(v;k;)-Graph
    corecore