35 research outputs found

    Risks of Offline Verify PIN on Contactless Cards

    Get PDF
    Contactless card payments are being introduced around the world al- lowing customers to use a card to pay for small purchases by simply placing the card onto the Point of Sale terminal. Contactless transactions do not require veri- fication of the cardholder’s PIN. However our research has found the redundant verify PIN functionality is present on the most commonly issued contactless credit and debit cards currently in circulation in the UK. This paper presents a plausible attack scenario which exploits contactless verify PIN to give unlimited attempts to guess the cardholder’s PIN without their knowledge. It also gives experimental data to demonstrate the practical viability of the attack as well as references to support our argument that contactless verify PIN is redundant functionality which compromises the security of payment cards and the cardholder

    Memorable And Secure: How Do You Choose Your PIN?

    Get PDF
    Managing all your PINs is difficult. Banks acknowledge this by allowing and facilitating PIN changes. However, choosing secure PINs is a difficult task for humans as they are incapable of consciously generating randomness. This leads to certain PINs being chosen more frequently than others, which in turn increases the danger of someone else guessing correctly. We investigate different methods of supporting PIN changes and report on an evaluation of these methods in a study with 152 participants. Our contribution is twofold: We introduce an alternative to system-generated random PINs, which considers people’s preferred memorisation strategy, and, secondly, we provide indication that presenting guidance on how to avoid insecure PINs does indeed nudge people towards more secure PIN choices when they are in the process of changing their PINs

    Red Button and Yellow Button: Usable Security for Lost Security Tokens

    Get PDF
    Currently, losing a security token places the user in a dilemma: reporting the loss as soon as it is discovered involves a significant burden which is usually overkill in the common case that the token is later found behind a sofa. Not reporting the loss, on the other hand, puts the security of the protected account at risk and potentially leaves the user liable. We propose a simple architectural solution with wide applicability that allows the user to reap the security benefit of reporting the loss early, but without paying the corresponding usability penalty if the event was later discovered to be a false alarm.The authors with a Cambridge affiliation are grateful to the European Research Council for funding this research through grant StG 307224 (Pico). Goldberg thanks NSERC for grant RGPIN-341529. We also thank the workshop attendees for comments

    PILOT: Password and PIN Information Leakage from Obfuscated Typing Videos

    Full text link
    This paper studies leakage of user passwords and PINs based on observations of typing feedback on screens or from projectors in the form of masked characters that indicate keystrokes. To this end, we developed an attack called Password and Pin Information Leakage from Obfuscated Typing Videos (PILOT). Our attack extracts inter-keystroke timing information from videos of password masking characters displayed when users type their password on a computer, or their PIN at an ATM. We conducted several experiments in various attack scenarios. Results indicate that, while in some cases leakage is minor, it is quite substantial in others. By leveraging inter-keystroke timings, PILOT recovers 8-character alphanumeric passwords in as little as 19 attempts. When guessing PINs, PILOT significantly improved on both random guessing and the attack strategy adopted in our prior work [4]. In particular, we were able to guess about 3% of the PINs within 10 attempts. This corresponds to a 26-fold improvement compared to random guessing. Our results strongly indicate that secure password masking GUIs must consider the information leakage identified in this paper

    Revisiting Security Vulnerabilities in Commercial Password Managers

    Get PDF
    In this work we analyse five popular commercial password managers for security vulnerabilities. Our analysis is twofold. First, we compile a list of previously disclosed vulnerabilities through a comprehensive review of the academic and non-academic sources and test each password manager against all the previously disclosed vulnerabilities. We find a mixed picture of fixed and persisting vulnerabilities. Then we carry out systematic functionality tests on the considered password managers and find four new vulnerabilities. Notably, one of the new vulnerabilities we identified allows a malicious app to impersonate a legitimate app to two out of five widely-used password managers we tested and as a result steal the user's password for the targeted service. We implement a proof-of-concept attack to show the feasibility of this vulnerability in a real-life scenario. Finally, we report and reflect on our experience of responsible disclosure of the newly discovered vulnerabilities to the corresponding password manager vendors

    It's not stealing if you need it: A panel on the ethics of performing research using public data of illicit origin

    Get PDF
    In a world where sensitive data can be published to a worldwide audience with the press of a button, researchers are increasingly making use of datasets that were publicized under questionable circumstances. In many cases, such research would otherwise not

    Towards Baselines for Shoulder Surfing on Mobile Authentication

    Full text link
    Given the nature of mobile devices and unlock procedures, unlock authentication is a prime target for credential leaking via shoulder surfing, a form of an observation attack. While the research community has investigated solutions to minimize or prevent the threat of shoulder surfing, our understanding of how the attack performs on current systems is less well studied. In this paper, we describe a large online experiment (n=1173) that works towards establishing a baseline of shoulder surfing vulnerability for current unlock authentication systems. Using controlled video recordings of a victim entering in a set of 4- and 6-length PINs and Android unlock patterns on different phones from different angles, we asked participants to act as attackers, trying to determine the authentication input based on the observation. We find that 6-digit PINs are the most elusive attacking surface where a single observation leads to just 10.8% successful attacks, improving to 26.5\% with multiple observations. As a comparison, 6-length Android patterns, with one observation, suffered 64.2% attack rate and 79.9% with multiple observations. Removing feedback lines for patterns improves security from 35.3\% and 52.1\% for single and multiple observations, respectively. This evidence, as well as other results related to hand position, phone size, and observation angle, suggests the best and worst case scenarios related to shoulder surfing vulnerability which can both help inform users to improve their security choices, as well as establish baselines for researchers.Comment: Will appear in Annual Computer Security Applications Conference (ACSAC
    corecore