6,977 research outputs found

    Adaptive Neural Coding Dependent on the Time-Varying Statistics of the Somatic Input Current

    Get PDF
    It is generally assumed that nerve cells optimize their performance to reflect the statistics of their input. Electronic circuit analogs of neurons require similar methods of self-optimization for stable and autonomous operation. We here describe and demonstrate a biologically plausible adaptive algorithm that enables a neuron to adapt the current threshold and the slope (or gain) of its current-frequency relationship to match the mean (or dc offset) and variance (or dynamic range or contrast) of the time-varying somatic input current. The adaptation algorithm estimates the somatic current signal from the spike train by way of the intracellular somatic calcium concentration, thereby continuously adjusting the neuronś firing dynamics. This principle is shown to work in an analog VLSI-designed silicon neuron

    CMOS-Memristor Dendrite Threshold Circuits

    Full text link
    Non-linear neuron models overcomes the limitations of linear binary models of neurons that have the inability to compute linearly non-separable functions such as XOR. While several biologically plausible models based on dendrite thresholds are reported in the previous studies, the hardware implementation of such non-linear neuron models remain as an open problem. In this paper, we propose a circuit design for implementing logical dendrite non-linearity response of dendrite spike and saturation types. The proposed dendrite cells are used to build XOR circuit and intensity detection circuit that consists of different combinations of dendrite cells with saturating and spiking responses. The dendrite cells are designed using a set of memristors, Zener diodes, and CMOS NOT gates. The circuits are designed, analyzed and verified on circuit boards.Comment: Zhanbossinov, K. Smagulova, A. P. James, CMOS-Memristor Dendrite Threshold Circuits, 2016 IEEE APCCAS, Jeju, Korea, October 25-28, 201

    Anticipated Synchronization in a Biologically Plausible Model of Neuronal Motifs

    Get PDF
    Two identical autonomous dynamical systems coupled in a master-slave configuration can exhibit anticipated synchronization (AS) if the slave also receives a delayed negative self-feedback. Recently, AS was shown to occur in systems of simplified neuron models, requiring the coupling of the neuronal membrane potential with its delayed value. However, this coupling has no obvious biological correlate. Here we propose a canonical neuronal microcircuit with standard chemical synapses, where the delayed inhibition is provided by an interneuron. In this biologically plausible scenario, a smooth transition from delayed synchronization (DS) to AS typically occurs when the inhibitory synaptic conductance is increased. The phenomenon is shown to be robust when model parameters are varied within physiological range. Since the DS-AS transition amounts to an inversion in the timing of the pre- and post-synaptic spikes, our results could have a bearing on spike-timing-dependent-plasticity models

    Biologically Plausible Information Propagation in a CMOS Integrate-and-Fire Artificial Neuron Circuit with Memristive Synapses

    Get PDF
    Neuromorphic circuits based on spikes are currently envisioned as a viable option to achieve brain-like computation capabilities in specific electronic implementations while limiting power dissipation given their ability to mimic energy efficient bio-inspired mechanisms. While several network architectures have been developed to embed in hardware the bio-inspired learning rules found in the biological brain, such as the Spike Timing Dependent Plasticity, it is still unclear if hardware spiking neural network architectures can handle and transfer information akin to biological networks. In this work, we investigate the analogies between an artificial neuron combining memristor synapses and rate-based learning rule with biological neuron response in terms of information propagation from a theoretical perspective. Bio-inspired experiments have been reproduced by linking the biological probability of release with the artificial synapses conductance. Mutual information and surprise have been chosen as metrics to evidence how, for different values of synaptic weights, an artificial neuron allows to develop a reliable and biological resembling neural network in terms of information propagation and analysi

    A CMOS Spiking Neuron for Brain-Inspired Neural Networks with Resistive Synapses and In-Situ Learning

    Get PDF
    Nanoscale resistive memories are expected to fuel dense integration of electronic synapses for large-scale neuromorphic system. To realize such a brain-inspired computing chip, a compact CMOS spiking neuron that performs in-situ learning and computing while driving a large number of resistive synapses is desired. This work presents a novel leaky integrate-and-fire neuron design which implements the dual-mode operation of current integration and synaptic drive, with a single opamp and enables in-situ learning with crossbar resistive synapses. The proposed design was implemented in a 0.18 μ\mum CMOS technology. Measurements show neuron's ability to drive a thousand resistive synapses, and demonstrate an in-situ associative learning. The neuron circuit occupies a small area of 0.01 mm2^2 and has an energy-efficiency of 9.3 pJ//spike//synapse
    corecore