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Anticipated synchronization in a biologically plausible model of neuronal motifs
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Two identical autonomous dynamical systems coupled in a master-slave configuration can exhibit anticipated
synchronization (AS) if the slave also receives a delayed negative self-feedback. Recently, AS was shown to
occur in systems of simplified neuron models, requiring the coupling of the neuronal membrane potential with its
delayed value. However, this coupling has no obvious biological correlate. Here we propose a canonical neuronal
microcircuit with standard chemical synapses, where the delayed inhibition is provided by an interneuron. In this
biologically plausible scenario, a smooth transition from delayed synchronization (DS) to AS typically occurs
when the inhibitory synaptic conductance is increased. The phenomenon is shown to be robust when model
parameters are varied within a physiological range. Since the DS-AS transition amounts to an inversion in the
timing of the pre- and post-synaptic spikes, our results could have a bearing on spike-timing-dependent plasticity
models.
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I. INTRODUCTION

Synchronization of nonlinear systems has been studied
extensively on a large variety of physical and biological
systems. Synchronization of oscillators goes back to the work
by Huygens, and in recent decades an increased interest in the
topic of synchronization of chaotic systems has arisen [1].

About a decade ago, Voss [2] discovered a new scheme of
synchronization that he called “anticipated synchronization.”
He found that two identical dynamical systems coupled
in a master-slave configuration can exhibit this anticipated
synchronization if the slave is subjected to a delayed self-
feedback. One of the prototypical examples proposed by Voss
[2–4] is described by the equations

ẋ = f (x(t)),
(1)

ẏ = f (y(t)) + K[x(t) − y(t − td )].

f (x) is a function that defines the autonomous dynamical
system. The solution y(t) = x(t + τ ), which characterizes
the anticipated synchronization (AS), has been shown to
be stable in a variety of scenarios, including theoretical
studies of autonomous chaotic systems [2–4], inertial ratchets
[5], and delayed-coupled maps [6], as well as experimental
observations in lasers [7,8] or electronic circuits [9].

More recently, AS was also shown to occur in a nonau-
tonomous dynamical system, with FitzHugh-Nagumo models
driven by white noise [10–12]. In these works, even when the
model neurons were tuned to the excitable regime, the slave
neuron was able to anticipate the spikes of the master neuron,
working as a predictor [9]. Though potentially interesting for
neuroscience, it is not trivial to compare these theoretical
results with real neuronal data. The main difficulty lies in
requiring that the membrane potentials of the involved neurons
be diffusively coupled. While a master-slave coupling of
the membrane potentials could in principle be conceived
by means of electrical synapses (via gap junctions) [13] or
ephaptic interactions [14], no biophysical mechanism has been

proposed to account for the delayed inhibitory self-coupling
of the slave membrane potential.

In the brain, the vast majority of neurons are coupled via
chemical synapses, which can be excitatory or inhibitory. In
both cases, the coupling is directional and highly nonlinear,
typically requiring a suprathreshold activation (e.g., a spike)
of the pre-synaptic neuron to trigger the release of neurotrans-
mitters. These neurotransmitters then need to diffuse through
the synaptic cleft and bind to receptors in the membrane of the
post-synaptic neuron. Binding leads to the opening of specific
channels, allowing ionic currents to change the post-synaptic
membrane potential [13]. This means that not only are the
membrane potentials not directly coupled, but the synapses
themselves are dynamical systems.

Here we propose to bridge this gap, investigating whether
AS can occur in biophysically plausible model neurons
coupled via chemical synapses. The model is described in
Sec. II. In Sec. III, we describe our results, showing that AS can
indeed occur in “physiological regions” of parameter space.
Finally, Sec. IV presents our concluding remarks and briefly
discusses the significance of our findings for neuroscience, as
well as perspectives of future work.

II. MODEL

A. Neuronal motifs

We start by mimicking the original master-slave circuit
of Eq. (1) with a unidirectional excitatory chemical synapse
[M −→ S in Fig. 1(a)]. In a scenario with standard biophysical
models, the inhibitory feedback we propose is given by an
interneuron (I) driven by the slave neuron, which projects
back an inhibitory chemical synapse to the slave neuron
[see Fig. 1(a)]. Therefore, the time-delayed negative feedback
is accounted for by chemical inhibition, which impinges
on the slave neuron some time after it has spiked, simply
because synapses have characteristic time scales. Such an
inhibitory feedback loop is one of the most canonical neuronal
microcircuits found to play several important roles, for
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FIG. 1. (Color online) (a)Three neurons coupled by chemical
synapses in the master-slave-interneuron (MSI) configuration: ex-
citatory AMPA synapses (with maximal conductance gA) couple
master (M) to slave (S) and slave to interneuron (I), whereas an
inhibitory GABAA synapse (with maximal conductance gG) couples
interneuron to slave. (b) Same as (a), except that all three neurons of
the MSI circuit receive excitatory (NMDA) synapses from a driver
neuron (D).

instance in the spinal cord [15], cortex [15], thalamus [16,17],
and nuclei involved with song production in the bird brain
[18]. For simplicity, we will henceforth refer to the three-
neuron motif of Fig. 1(a) as a master-slave-interneuron (MSI)
system.

As we show in Sec. III below, whether or not the MSI
circuit can exhibit AS depends, among other factors, on
the excitability of the three neurons. In the MSI, this is
controlled by a constant applied current (see Sec. III A). To test
the robustness of the results (and at the same time improve the
realism and complexity of the model), in Sec. III B we study the
four-neuron motif depicted in Fig. 1(b), where the excitability
of the MSI network is chemically modulated via synapses
projecting from a global driver (D). From now on, we refer
to the four-neuron motif as a driver-master-slave-interneuron
(DMSI) microcircuit.

B. Model neurons

In the above networks, each node is described by a Hodgkin-
Huxley (HH) model neuron [19], consisting of four coupled
ordinary differential equations associated to the membrane
potential V and the ionic currents flowing across the axonal
membrane corresponding to the Na, K, and leakage currents.
The gating variables for sodium are h and m and that for
potassium is n. The equations read [20]

Cm

dV

dt
= GNam

3h(ENa − V ) + GKn4(EK − V )

+Gm(Vrest − V ) + I +
∑

Isyn, (2)

dx

dt
= αx(V )(1 − x) − βx(V )x , (3)

where x ∈ {h,m,n}, Cm = 9π μF is the membrane capaci-
tance of a 30 × 30 × π μm2 equipotential patch of membrane
[20], I is a constant current that sets the neuron excitability,
and

∑
Isyn accounts for the interaction with other neurons. The

reversal potentials are ENa = 115 mV, EK = −12 mV, and

Vrest = 10.6 mV, which correspond to maximal conductances
GNa = 1080π mS, GK = 324π mS, and Gm = 2.7π mS,
respectively. The voltage-dependent rate constants in the
Hodgkin-Huxley model have the form

αn(V ) = 10 − V

100(e(10−V )/10 − 1)
, (4)

βn(V ) = 0.125e−V/80, (5)

αm(V ) = 25 − V

10(e(25−V )/10 − 1)
, (6)

βm(V ) = 4e−V/18, (7)

αh(V ) = 0.07e−V/20, (8)

βh(V ) = 1

(e(30−V )/10 + 1)
. (9)

Note that all voltages are expressed relative to the resting
potential of the model at I = 0 [20].

According to Rinzel and Miller [21], in the absence of
synaptic currents, the only attractor of the system of Eqs. (2)–
(9) for I � 177.13 pA is a stable fixed point, which loses
stability via a subcritical Hopf bifurcation at I � 276.51
pA. For 177.13 pA � I � 276.51 pA, the stable fixed point
coexists with a stable limit cycle.

C. Synaptic coupling

AMPA (A) and GABAA (G) are the fast excitatory and
inhibitory synapses in our model [see Fig. 1(a)]. Following
Destexhe et al. [22], the fraction r (i) (i = A,G) of bound (i.e.,
open) synaptic receptors is modeled by a first-order kinetic
dynamics:

dr (i)

dt
= αi[T ](1 − r (i)) − βir

(i), (10)

where αi and βi are rate constants and [T ] is the neurotrans-
mitter concentration in the synaptic cleft. For simplicity, we
assume [T ] to be an instantaneous function of the pre-synaptic
potential Vpre:

[T ](Vpre) = Tmax

1 + e[−(Vpre−Vp)/Kp] , (11)

where Tmax = 1 mM−1 is the maximal value of [T ], Kp =
5 mV gives the steepness of the sigmoid, and Vp = 62 mV
sets the value at which the function is half-activated [22].

The synaptic current at a given synapse is given by

I (i) = gir
(i)(V − Ei), (12)

where V is the post-synaptic voltage, gi is the maximal
conductance, and Ei is the reversal potential. We use EA =
60 mV and EG = −20 mV.

The values of the rate constants αA, βA, αG, and βG are
known to depend on a number of different factors and vary
significantly [23–26]. To exemplify some of our results, we
initially fix some parameters, which are set to the values of
Table I unless otherwise stated (Sec. III A 1). Then we allow
these parameters (as well as the synaptic conductances) to
vary within the physiological range when exploring different
synchronization regimes (see Secs. III A 2 and III B).
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TABLE I. Standard values employed in the model. See text for
details.

MSI DMSI

αA (mM−1 ms−1) 1.1 1.1
βA (ms−1) 0.19 0.19
αG (mM−1 ms−1) 5.0 5.0
βG (ms−1) 0.30 0.60
αN (mM−1 ms−1) 0.072
βN (ms−1) 0.0066
gA (nS) 10 10
I (pA) 280 160

The slow excitatory synapse is NMDA (N) and its synaptic
current is given by

I (N) = gNB(V )r (N)(V − EN), (13)

where EN = 60 mV. The dynamics of the variable r (N) is
similar to Eq. (10) with αN = 0.072 mM−1 ms−1 and βN =
0.0066 ms−1. The magnesium block of the NMDA receptor
channel can be modeled as a function of post-synaptic voltage
V :

B(V ) = 1

1 + e(−0.062V )[Mg2+]o/3.57
, (14)

where [Mg2+]o = 1 mM is the physiological extracellular
magnesium concentration.

In what follows, we will drop the neurotransmitter super-
scripts A, G, and N from the synaptic variables r and I .
Instead, we will use double subscripts to denote the referred
pre- and post-synaptic neurons. For instance, the synaptic
current in the slave neuron due to the interneuron (the only
inhibitory synapse in our models) will be denoted as IIS, and so
forth.

III. RESULTS

A. Master-slave-interneuron circuits

1. Three dynamical regimes

Initially, we describe results for the scenario in which
all neurons receive a constant current I � 280 pA. This
corresponds to a situation in which the fixed points are unstable
and, when isolated, the model neurons spike periodically.
All other parameters are as in Table I. For different sets of
inhibitory conductance values gG, our system can exhibit three
different behaviors. To characterize them, we define tM

i as the
time at which the membrane potential of the master neuron is
at its maximal value in the ith cycle (i.e., its ith spike time),
and tS

i as the spike time of the slave neuron that is nearest
to tM

i .
The delay τi is defined as the difference (see Fig. 2)

τi ≡ tM
i − tS

i . (15)

Initial conditions were randomly chosen for each computed
time series. When τi converges to a constant value τ , a phase-
locked regime is reached [27]. If τ < 0 (“master neuron spikes
first”), we say that the system exhibits delayed synchronization
(DS) [Fig. 2(a)]. If τ > 0 (“slave neuron spikes first”), we say
that anticipated synchronization (AS) occurs [Fig. 2(b)]. If τ

49960 49970 49980 49990
t (ms)

0

40

80

120

V
 (

m
V

)

M
S
It

i
 - t

i+1
τ = t

i
 - t

i

(DS)
S SM M

49960 49970 49980
t (ms)

0

40

80

120

V
 (

m
V

)

M
S
I t

i
 - t

i-1
τ = t

i
 - t

i

(AS)

SS MM

(a)

(b)

FIG. 2. (Color online) Membrane potential V as a function of
time for an external current I = 280 pA in the master (M), slave
(S), and interneuron (I) neurons. The plot illustrates two regimes:
(a) gG = 20 nS leads to delayed synchronization (DS), where τ < 0,
and (b) gG = 40 nS leads to anticipated synchronization (AS), where
τ > 0. Other parameters as in Table I.

does not converge to a fixed value, the system is in a phase
drift (PD) regime [27]. The extent to which the AS regime can
be legitimately considered “anticipated” in a periodic system
will be discussed below.

In Fig. 3, we show examples of time series in the three
different regimes (DS, AS, and PD). The different panels
correspond to the membrane potential, fraction of activated
receptors for each synapse, and synaptic current in the slave
neuron. For a relatively small value of the inhibitory coupling
[gG = 20 nS, Fig. 3(a)], the slave neuron lags behind the
master, characterizing DS. In Fig. 3(b), we observe that by
increasing the value of the inhibitory coupling (gG = 40 nS),
we reach an AS regime. Finally, for strong enough inhibition
[gG = 60 nS, Fig. 3(c)], the PD regime ensues.

In the DS and AS regimes, the master and slave neurons
spike at the same frequency. However, when the system reaches
the PD regime, the mean firing rate of the slave neuron
becomes higher than that of the master. The counterintuitive
result shown in Fig. 4(a) emerges: the mean firing rate of the
slave neuron increases while increasing the conductance of
the inhibitory synapse projected from the interneuron. For the
particular combination of parameters used in Fig. 4(a), the
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FIG. 3. (Color online) Time series of the membrane potentials
(V ), bound receptors (r), and synaptic currents (I ), with model
parameters as in Table I. Note that the system is periodic in the
DS and AS regimes [(a) and (b), respectively], but not in the PD
regime (c).

transition turns out to be reentrant, i.e., the system returns
to the DS regime for sufficiently strong inhibition (a more
detailed exploration of parameter space will be presented
below). Figure 4(b) shows the return map of the interspike
interval of the slave, which forms a closed curve (touching the
trivial single-point return map of the master). This is consistent
with a quasiperiodic phase-drift regime.
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FIG. 4. (Color online) (a) The mean firing rate of the slave (FS)
coincides with the mean firing rate of the master (FM) for DS and
AS regimes, but it is larger for PD. (b) In PD, the return map of
the interspike interval of the slave is consistent with a quasiperiodic
system (the pink star shows the return map of the master).

Note that in this simple scenario, gG plays an analogous
role to that of K in Eq. (1), for which AS is stable only
when K > Kc (eventually with reentrances) [28]. Moreover,
the behavior of the synaptic current in the slave neuron is
particularly revealing: in the DS regime [Fig. 3(a)], it has a
positive peak prior to the slave spike, which drives the firing
in the slave neuron. In the AS regime [Fig. 3(b)], however,
there is no significant resulting current, except when the slave
neuron is already suprathreshold. In this case, the current has
essentially no effect upon the slave dynamics. This situation
is similar to the stable anticipated solution of Eq. (1) when the
coupling term vanishes.

2. Scanning parameter space

The dependence of the time delay τ on gG is shown in
Fig. 5 for different values of the external current I and maximal
excitatory conductance gA. Several features in those curves are
worth emphasizing. First, unlike previous studies on AS, where
the anticipation time was hard-wired via the delay parameter
td [see Eq. (1)], in our case the anticipation time τ is a result
of the dynamics. Note that gG (the parameter varied in Fig. 5)
does not change the time scales of the synaptic dynamical
variables (r), only the synaptic strength.

Secondly, τ varies smoothly with gG. This continuity
somehow allows us to interpret τ > 0 as a legitimately
anticipated regime. The reasoning is as follows. For gG = 0,
we simply have a master-slave configuration in which the two
neurons spike periodically. Due to the excitatory coupling,
the slave’s spike is always closer to the master’s spike that
preceded it than to the master’s spike that succeeded it [as in,
e.g., Fig. 2(a)]. Moreover, the time difference is approximately
1.5 ms, which is comparable to the characteristic times of the
synapse. In that case, despite the formal ambiguity implicit
in the periodicity of the time series, the dynamical regime is
usually understood as “delayed synchronization.” We interpret
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FIG. 5. (Color online) Dependence of the time delay τ with the
maximal conductance gG for different values of the applied current I

and gA. The end of each curve (stars) marks the critical value of gG,
above which the system changes from AS to PD.

it in the following sense: the system is phase-locked at a phase
difference with a well-defined sign [27]. Increasing gG, the
time difference between the master’s and the slave’s spikes
eventually changes sign [as in, e.g., Fig. 2(b)]. Even though
the ambiguity remains in principle, there is no reason why
we should not call this regime “anticipated synchronization”
(again a phase-locked regime, but with a phase difference
of opposite sign). In fact, we have not found any parameter
change that would take the model from the situation in Fig. 2(a)
to that of Fig. 2(b) by gradually increasing the lag of the
slave spike until it approached the next master spike. If
that ever happened, τ would change discontinuously (by its
definition). Therefore, the term “anticipated synchronization”
by no means implies violation of causality and should be
interpreted with caution. As we will discuss in Sec. IV, the
relative timing between pre- and post-synaptic neurons turns
out to be extremely relevant for real neurons.

Third, it is interesting to note that the largest anticipation
time can be longer (up to 3 ms, i.e., about 20% of the interspike
interval) than the largest time for the delayed synchronization
(≈1.5 ms). If one increases gG further in an attempt to obtain
even larger values of τ , however, the system undergoes a
bifurcation to a regime with phase drift (which marks the end
of the curves in Fig. 5).

The number of parameters in our model is very large. The
number of dynamical regimes that a system of coupled non-
linear oscillators can present is also very large, most notably
p/q-subharmonic locking structured in Arnold tongues [29].
These occur in our model, but not in the parameter region
we are considering. In this context, an attempt to map all the
dynamical possibilities in parameter space would be extremely
difficult and, most important, unproductive for our purposes.
We therefore focus on addressing the main question of this
paper, which is whether AS can be stable in a biophysically
plausible model.

In Fig. 6, we display a two-dimensional projection of the
phase diagram of our model. We employ the values in Table I,
except for gA, which is varied along the horizontal axis. Note
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FIG. 6. (Color online) Delay τ (right bar) in the (gA,gG) projec-
tion of parameter space: DS (blue, right), AS (red, middle), and PD
(white, left—meaning that no stationary value of τ was found).

that each black curve with circles in Fig. 5 corresponds to a
different vertical cut of Fig. 6, along which gG changes. We
observe that the three different regimes are distributed in large
continuous regions, having a clear transition between them.
Moreover, the transition from the DS to the AS phase can be
well approximated by a linear relation gG/gA ≈ 3.5 in a large
portion of the diagram.

Linearity, however, breaks down as parameters are further
varied. This can be seen, e.g., in Fig. 7, which displays the
same projection as Fig. 6, but for different combinations of βG

and βA. We observe that AS remains stable in a finite region
of the parameter space, and this region increases as excitatory
synapses become faster.

Figure 5 suggests that larger values of the input current I

eventually lead to a transition from AS to DS. This effect is
better depicted in Fig. 8, where the DS region increases in size
as I (and therefore the firing rate) increases. Figures 8(b)–8(d)
also show that the system can exhibit reentrant transitions as
gG is varied. Most importantly, however, is that Figs. 7 and 8
show that there is always an AS region in parameter space, as
synaptic and intrinsic parameters are varied.

As we will discuss in Sec. IV, the possibility of controlling
the transition between AS and DS is in principle extremely
appealing to the study of plasticity in neuroscience. However,
in a biological network, the input current would not be
exactly constant, but rather would be modulated by other
neurons. In the following, we test the robustness of AS in
this more involved scenario, therefore moving one step ahead
in biological plausibility.

B. Driver-master-slave-interneuron circuits

Let us consider the MSI circuit under a constant input
current I = 160 pA. This is below the Hopf bifurcation [21],
i.e., none of the three neurons spikes tonically. Their activity
will now be controlled by the driver neuron (D), which projects
excitatory synapses onto the MSI circuit [see Fig. 1(b)]. We
chose to replace the constant input current by a slowly varying
current, so that the synapses projecting from the driver neuron
are of the NMDA type (see Sec. II). The driver neuron receives
a current ID = 280 pA, so it spikes tonically. All remaining
parameters are as in the second column of Table I. The
interest in this case is to verify whether AS holds when the
excitability of the MSI circuit is modulated by a nonstationary
current.
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FIG. 7. (Color online) Delay τ (right bar) in the (gA,gG) projection of parameter space for different combinations of βA and βG. From left
to right we have, respectively, PD, AS, and DS regimes, as in Fig. 6.

As shown in Fig. 9, we found in this new scenario a similar
route from DS to AS, and then the PD regime (compare with
Fig. 7). Note that the characteristic time (βN = 6.6 s−1) for the

unbinding of the NMDA receptors is about ten times larger
than the interspike interval of the driver neuron (which spikes
at ≈67 Hz). As a consequence, rDM, rDS, and rDI are kept at
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FIG. 8. (Color online) Delay τ (right bar) in the (gA,gG) projection of parameter space for different values of I . PD, AS, and DS regimes
as in Fig. 6.

021922-6



ANTICIPATED SYNCHRONIZATION IN A BIOLOGICALLY . . . PHYSICAL REVIEW E 84, 021922 (2011)

β G
 =

 0
.3

0 
m

s-1
β G

 =
 0

.6
0 

m
s-1

βA = 0.19 ms-1 βA = 0.30 ms-1 βA = 0.60 ms-1

g
G

 (n
S

)
g

G
 (n

S
)

gA (nS) gA (nS) gA (nS)

0

20

40

60

80

100

β G
 =

 0
.3

0 
m

s-1
β G

 =
 0

.6
0 

m
s-1

βA = 0.19 ms-1 βA = 0.30 ms-1 βA = 0.60 ms-1

g
G

 (n
S

)
g

G
 (n

S
)

gA (nS) gA (nS) gA (nS)

β G
 =

 0
.3

0 
m

s-1
β G

 =
 0

.6
0 

m
s-1

βA = 0.19 ms-1 βA = 0.30 ms-1 βA = 0.60 ms-1

g
G

 (n
S

)
g

G
 (n

S
)

gA (nS) gA (nS) gA (nS)

-2
-1
 0
 1
 2
 3
 4
 5
 6
 7

β G
 =

 0
.3

0 
m

s-1
β G

 =
 0

.6
0 

m
s-1

βA = 0.19 ms-1 βA = 0.30 ms-1 βA = 0.60 ms-1

g
G

 (n
S

)
g

G
 (n

S
)

gA (nS) gA (nS) gA (nS)
10 20 30 40 50

0

20

40

60

80

100

β G
 =

 0
.3

0 
m

s-1
β G

 =
 0

.6
0 

m
s-1

βA = 0.19 ms-1 βA = 0.30 ms-1 βA = 0.60 ms-1

g
G

 (n
S

)
g

G
 (n

S
)

gA (nS) gA (nS) gA (nS)
10 20 30 40 50

β G
 =

 0
.3

0 
m

s-1
β G

 =
 0

.6
0 

m
s-1

βA = 0.19 ms-1 βA = 0.30 ms-1 βA = 0.60 ms-1

g
G

 (n
S

)
g

G
 (n

S
)

gA (nS) gA (nS) gA (nS)
10 20 30 40 50

-2
-1
 0
 1
 2
 3
 4
 5
 6
 7

FIG. 9. (Color online) DMSI circuit [see Fig. 1(b)]. Delay τ (right bar) in the (gA,gG) projection of parameter space for different combinations
of βA and βG. PD, AS, and DS regimes as in Fig. 6.

nearly constant values (with variations of ≈10% around a mean
value—data not shown). The variations in the NMDA synaptic
current are also small, which, in principle, should make the
system behave in an apparently similar way to the previous
MSI circuit. However, these small variations are important
enough to increase the AS domain in parameter space, in some
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FIG. 10. (Color online) DMSI circuit [see Fig. 1(b)]. (a) The
mean firing rate of the slave (FS) coincides with the mean firing rate
of the master (FM) for DS and AS regimes, but it is larger for PD.
(b) In PD, the return map of the interspike interval of the slave is
consistent with a quasiperiodic system.

cases even eliminating the PD region (see, e.g., Fig. 9 for
βG = 0.30 ms−1). Therefore, at least in this case, the use of
more biologically plausible parameters does not destroy AS,
but rather enhances it.

In fact, the three regions in the MSI diagrams seem to retain
their main features in the DMSI circuit. When PD occurs,
for example, the slave again spikes faster than the master
[Fig. 10(a)], as in the MSI circuit [compare with Fig. 4(a)].
Another signature of the robustness of the PD phase against the
replacement of a constant by a slowly varying synaptic current
appears in the return map shown in Fig. 10(b). It can be seen
that it has the same structure of its three-neuron counterpart
shown in Fig. 4(b).

IV. CONCLUDING REMARKS

In summary, we have shown that a biologically plausible
model of a three-neuron (MSI) motif can exhibit an attractor in
phase space where anticipated synchronization is stable. The
transition from the DS to the AS regime is a smooth function of
the synaptic conductances. Typically, a further increase in the
inhibitory conductance gG leads to a second transition from
AS to PD, a quasiperiodic regime in which the slave firing
frequency is larger than that of the master.

We have varied synaptic decay rates (β), synaptic conduc-
tances (g), as well as input currents (I ) within well-accepted
physiological ranges [23–26]. In all the scenarios, there is
always a continuous region in parameter space where AS is
stable. Replacing the constant current by a global periodic
driver (arguably a more realistic situation), we obtain a model
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of a four-neuron (DMSI) motif that exhibits the same three
regions of the simpler model. The synaptic rise constants (α)
were also varied, but have a lesser effect on the transitions
among the different regimes (data not shown). Therefore,
the phenomenon seems to be robust at the microcircuit
scale.

It is important to emphasize that our AS results differ from
those obtained from Eq. (1) at a fundamental level. In our
model, the delayed feedback that leads to AS is given by
biologically plausible elements (an interneuron and chemical
synapses). Hence, the anticipation time is not hard-wired in
the dynamical equations, but rather emerges from the circuit
dynamics. Moreover, the particular circuit we study is a
neuronal motif ubiquitously found in the brain [15–17]. We
are unaware of other AS models in which every parameter has
a clear biological interpretation.

We believe that our results can be extremely relevant
for modeling studies of synaptic plasticity. Recent decades
have witnessed a growing literature on spike-timing-dependent
plasticity (STDP), which accounts for the enhancement or
diminution of synaptic weight [long-term potentiation (LTP)
and long-term depression (LTD), respectively] depending
on the relative timing between the spikes of the pre- and
post-synaptic neurons (see, e.g., [30–32]). Experimental data
strongly suggest that if the pre-synaptic neuron fires before
(after) the post-synaptic neuron, the synapse between them
will be strengthened (weakened) [33,34]. STDP is supposed
to take place in a window of time differences between post-
and pre-synaptic spikes in the order of ten milliseconds,
which is within the range of the delay and anticipation

times of our models. Since the DS-AS transition amounts
to an inversion in the timing of the pre- and post-synaptic
spikes, then by appropriately controlling this effect one
could dynamically toggle between synaptic strengthening and
weakening. This could potentially be linked with modeling
of large-scale ascending feedback modulation from reward
systems.

Our results, therefore, offer a number of possibilities
for further investigation. Including effects from microcircuit
dynamics (such as the ones we have presented here) in models
of synaptic plasticity is a natural next step, one which we are
currently pursuing. Once we have verified AS in a biologically
plausible model, one could consider using simplified models
[35,36] (e.g., by replacing the HH equations and/or the
synaptic kinetics) and the influence of noise [10,20]. We are
also investigating whether the structure of the phase diagram
can be qualitatively reproduced via a phase-response-curve
analysis [37,38] of the neuronal motifs studied here. Results
will be published elsewhere.
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