27,339 research outputs found

    Integrating mobile robotics and vision with undergraduate computer science

    Get PDF
    This paper describes the integration of robotics education into an undergraduate Computer Science curriculum. The proposed approach delivers mobile robotics as well as covering the closely related field of Computer Vision, and is directly linked to the research conducted at the authors’ institution. The paper describes the most relevant details of the module content and assessment strategy, paying particular attention to the practical sessions using Rovio mobile robots. The specific choices are discussed that were made with regard to the mobile platform, software libraries and lab environment. The paper also presents a detailed qualitative and quantitative analysis of student results, including the correlation between student engagement and performance, and discusses the outcomes of this experience

    A Playful Experiential Learning System With Educational Robotics

    Get PDF
    This article reports on two studies that aimed to evaluate the effective impact of educational robotics in learning concepts related to Physics and Geography. The reported studies involved two courses from an upper secondary school and two courses froma lower secondary school. Upper secondary school classes studied topics ofmotion physics, and lower secondary school classes explored issues related to geography. In each grade, there was an “experimental group” that carried out their study using robotics and cooperative learning and a “control group” that studied the same concepts without robots. Students in both classes were subjected to tests before and after the robotics laboratory, to check their knowledge in the topics covered. Our initial hypothesis was that classes involving educational robotics and cooperative learning are more effective in improving learning and stimulating the interest and motivation of students. As expected, the results showed that students in the experimental groups had a far better understanding of concepts and higher participation to the activities than students in the control groups

    The use of UTAUT and Post Acceptance models to investigate the attitude towards a telepresence robot in an educational setting

    Get PDF
    (1) Background: In the last decade, various investigations into the field of robotics have created several opportunities for further innovation to be possible in student education. However, despite scientific evidence, there is still strong scepticism surrounding the use of robots in some social fields, such as personal care and education; (2) Methods: In this research, we present a new tool named: HANCON model that was developed merging and extending the constructs of two solid and proven models: the Unified Theory of Acceptance and Use of Technology (UTAUT) model to examine the factors that may influence the decision to use a telepresence robot as an instrument in educational practice, and the Post Acceptance Model to evaluate acceptability after the actual use of a telepresence robot. The new tool is implemented and used to study the acceptance of a Double telepresence robot by 112 pre-service teachers in an educational setting; (3) Results: The analysis of the experimental results predicts and demonstrate a positive attitude towards the use of telepresence robot in a school setting and confirm the applicability of the model in an educational context; (4) Conclusions: The constructs of the HANCON model could predict and explain the acceptance of social telepresence robots in social contexts

    Building ArtBots to attract students into STEM learning

    Get PDF
    There is an increasing worldwide demand for people educated into science and technology. Unfortunately, girls and underprivileged students are often underrepresented in Science, Technology, Engineering and Mathematics (STEM) education programs. We believe that by inclusion of art in these programs, educational activities might become more attractive to a broader audience. In this work we present an example of such an educational activity: an international robotics and art week for secondary school students. This educational activity builds up on the project-based and inquiry learning framework. This article is intended as a brief manual to help others organise such an activity. It also gives insights in how we led a highly heterogeneous group of students into learning STEM and becoming science and technology ambassadors for their peers

    Assistive robotics: research challenges and ethics education initiatives

    Get PDF
    Assistive robotics is a fast growing field aimed at helping healthcarers in hospitals, rehabilitation centers and nursery homes, as well as empowering people with reduced mobility at home, so that they can autonomously fulfill their daily living activities. The need to function in dynamic human-centered environments poses new research challenges: robotic assistants need to have friendly interfaces, be highly adaptable and customizable, very compliant and intrinsically safe to people, as well as able to handle deformable materials. Besides technical challenges, assistive robotics raises also ethical defies, which have led to the emergence of a new discipline: Roboethics. Several institutions are developing regulations and standards, and many ethics education initiatives include contents on human-robot interaction and human dignity in assistive situations. In this paper, the state of the art in assistive robotics is briefly reviewed, and educational materials from a university course on Ethics in Social Robotics and AI focusing on the assistive context are presented.Peer ReviewedPostprint (author's final draft

    Human-centred design methods : developing scenarios for robot assisted play informed by user panels and field trials

    Get PDF
    Original article can be found at: http://www.sciencedirect.com/ Copyright ElsevierThis article describes the user-centred development of play scenarios for robot assisted play, as part of the multidisciplinary IROMEC1 project that develops a novel robotic toy for children with special needs. The project investigates how robotic toys can become social mediators, encouraging children with special needs to discover a range of play styles, from solitary to collaborative play (with peers, carers/teachers, parents, etc.). This article explains the developmental process of constructing relevant play scenarios for children with different special needs. Results are presented from consultation with panel of experts (therapists, teachers, parents) who advised on the play needs for the various target user groups and who helped investigate how robotic toys could be used as a play tool to assist in the children’s development. Examples from experimental investigations are provided which have informed the development of scenarios throughout the design process. We conclude by pointing out the potential benefit of this work to a variety of research projects and applications involving human–robot interactions.Peer reviewe

    Teaching humanoid robotics by means of human teleoperation through RGB-D sensors

    Get PDF
    This paper presents a graduate course project on humanoid robotics offered by the University of Padova. The target is to safely lift an object by teleoperating a small humanoid. Students have to map human limbs into robot joints, guarantee the robot stability during the motion, and teleoperate the robot to perform the correct movement. We introduce the following innovative aspects with respect to classical robotic classes: i) the use of humanoid robots as teaching tools; ii) the simplification of the stable locomotion problem by exploiting the potential of teleoperation; iii) the adoption of a Project-Based Learning constructivist approach as teaching methodology. The learning objectives of both course and project are introduced and compared with the students\u2019 background. Design and constraints students have to deal with are reported, together with the amount of time they and their instructors dedicated to solve tasks. A set of evaluation results are provided in order to validate the authors\u2019 purpose, including the students\u2019 personal feedback. A discussion about possible future improvements is reported, hoping to encourage further spread of educational robotics in schools at all levels
    • …
    corecore