3,372 research outputs found

    Representational structure or task structure? Bias in neural representational similarity analysis and a Bayesian method for reducing bias

    No full text
    <div><p>The activity of neural populations in the brains of humans and animals can exhibit vastly different spatial patterns when faced with different tasks or environmental stimuli. The degrees of similarity between these neural activity patterns in response to different events are used to characterize the representational structure of cognitive states in a neural population. The dominant methods of investigating this similarity structure first estimate neural activity patterns from noisy neural imaging data using linear regression, and then examine the similarity between the estimated patterns. Here, we show that this approach introduces spurious bias structure in the resulting similarity matrix, in particular when applied to fMRI data. This problem is especially severe when the signal-to-noise ratio is low and in cases where experimental conditions cannot be fully randomized in a task. We propose Bayesian Representational Similarity Analysis (BRSA), an alternative method for computing representational similarity, in which we treat the covariance structure of neural activity patterns as a hyper-parameter in a generative model of the neural data. By marginalizing over the unknown activity patterns, we can directly estimate this covariance structure from imaging data. This method offers significant reductions in bias and allows estimation of neural representational similarity with previously unattained levels of precision at low signal-to-noise ratio, without losing the possibility of deriving an interpretable distance measure from the estimated similarity. The method is closely related to Pattern Component Model (PCM), but instead of modeling the estimated neural patterns as in PCM, BRSA models the imaging data directly and is suited for analyzing data in which the order of task conditions is not fully counterbalanced. The probabilistic framework allows for jointly analyzing data from a group of participants. The method can also simultaneously estimate a signal-to-noise ratio map that shows where the learned representational structure is supported more strongly. Both this map and the learned covariance matrix can be used as a structured prior for maximum <i>a posteriori</i> estimation of neural activity patterns, which can be further used for fMRI decoding. Our method therefore paves the way towards a more unified and principled analysis of neural representations underlying fMRI signals. We make our tool freely available in Brain Imaging Analysis Kit (BrainIAK).</p></div

    Incorporating structured assumptions with probabilistic graphical models in fMRI data analysis

    Full text link
    With the wide adoption of functional magnetic resonance imaging (fMRI) by cognitive neuroscience researchers, large volumes of brain imaging data have been accumulated in recent years. Aggregating these data to derive scientific insights often faces the challenge that fMRI data are high-dimensional, heterogeneous across people, and noisy. These challenges demand the development of computational tools that are tailored both for the neuroscience questions and for the properties of the data. We review a few recently developed algorithms in various domains of fMRI research: fMRI in naturalistic tasks, analyzing full-brain functional connectivity, pattern classification, inferring representational similarity and modeling structured residuals. These algorithms all tackle the challenges in fMRI similarly: they start by making clear statements of assumptions about neural data and existing domain knowledge, incorporating those assumptions and domain knowledge into probabilistic graphical models, and using those models to estimate properties of interest or latent structures in the data. Such approaches can avoid erroneous findings, reduce the impact of noise, better utilize known properties of the data, and better aggregate data across groups of subjects. With these successful cases, we advocate wider adoption of explicit model construction in cognitive neuroscience. Although we focus on fMRI, the principle illustrated here is generally applicable to brain data of other modalities.Comment: update with the version accepted by Neuropsychologi

    Variational representational similarity analysis

    Get PDF
    © 2019 The Authors This technical note describes a variational or Bayesian implementation of representational similarity analysis (RSA) and pattern component modelling (PCM). It considers RSA and PCM as Bayesian model comparison procedures that assess the evidence for stimulus or condition-specific patterns of responses distributed over voxels or channels. On this view, one can use standard variational inference procedures to quantify the contributions of particular patterns to the data, by evaluating second-order parameters or hyperparameters. Crucially, this allows one to use parametric empirical Bayes (PEB) to infer which patterns are consistent among subjects. At the between-subject level, one can then assess the evidence for different (combinations of) hypotheses about condition-specific effects using Bayesian model comparison. Alternatively, one can select a single hypothesis that best explains the pattern of responses using Bayesian model selection. This note rehearses the technical aspects of within and between-subject RSA using a worked example, as implemented in the Statistical Parametric Mapping (SPM) software. En route, we highlight the connection between univariate and multivariate analyses of neuroimaging data and the sorts of analyses that are possible using component modelling and representational similarity analysis
    corecore