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Abstract

Functional magnetic resonance imaging (fMRI) offers a rich source of data for studying the neural

basis of cognition. Here, we describe the Brain Imaging Analysis Kit (BrainIAK), an open-source,

free Python package that provides computationally-optimized solutions to key problems in advanced

fMRI analysis. A variety of techniques are presently included in BrainIAK: intersubject correla-

tion (ISC) and intersubject functional connectivity (ISFC), functional alignment via the shared

response model (SRM), full correlation matrix analysis (FCMA), a Bayesian version of represen-

tational similarity analysis (BRSA), event segmentation using hidden Markov models, topographic

factor analysis (TFA), inverted encoding models (IEM), an fMRI data simulator that uses noise

characteristics from real data (fmrisim), and some emerging methods. These techniques have been

optimized to leverage the efficiencies of high performance compute (HPC) clusters, and the same

code can be seamlessly transferred from a laptop to a cluster. For each of the aforementioned tech-

niques, we describe the data analysis problem that the technique is meant to solve, and how it solves

that problem; we also include an example Jupyter notebook for each technique and an annotated

bibliography of papers that have used and/or described that technique. In addition to the sections

describing various analysis techniques in BrainIAK, we have included sections describing the future

applications of BrainIAK to real-time fMRI, tutorials that we have developed and shared online to

facilitate learning the techniques in BrainIAK, computational innovations in BrainIAK, and how to

contribute to BrainIAK. We hope that this manuscript helps readers to understand how BrainIAK

might be useful in their research.

3



1 Introduction

Cognitive neuroscientists have come a long way in using functional magnetic resonance imaging

(fMRI) to help answer questions about cognitive processing in the brain. A variety of methods

have been developed, ranging from univariate techniques to multivariate pattern analysis (MVPA)

methods [1–4]. A large number of toolboxes are now available that implement these pattern-

analysis methods, including, for example, the Princeton MVPA Toolbox [5], the Decoding Toolbox

[6], CoSMoMVPA [7], Nilearn [8] and PyMVPA [9] (for a full list see https://github.com/ohbm/

hackathon2019/blob/master/Tutorial Resources.md). Scientists can choose which toolbox to use

based on the analysis that they wish to perform and the programming language they wish to use.

In this work, we describe the Brain Imaging Analysis Kit (BrainIAK (RRID:SCR 014824),

https://brainiak.org), an open-source Python package that implements computationally-optimized

solutions to key problems in advanced fMRI data analysis, focusing on analysis steps that take

place after data have been preprocessed and put in matrix form. BrainIAK can be viewed as

a “Swiss army knife” for advanced fMRI analysis, where we are constantly striving to add new

tools. Presently, BrainIAK includes methods for running inter-subject correlation (ISC) [10] and

inter-subject functional correlation (ISFC) [11, 12], functional alignment via the shared response

model (SRM) [13], Bayesian RSA [14, 15], event segmentation [16], dimensionality reduction via

topographic factor analysis (TFA) [17], and inverted encoding models (IEMs) [18, 19].

To avoid duplication across packages, BrainIAK leverages available methods in other pack-

ages – it is well integrated with Nilearn (https://nilearn.github.io/index.html) [20], and extensively

uses Scikit-learn (https://scikit-learn.org/) [21] for machine learning algorithms. The functions in

BrainIAK are optimized to run on high performance compute (HPC) clusters for efficient execution

on large datasets. The same code can be executed on a laptop or a HPC cluster, saving significant

time in refactoring the code to run in a HPC environment. BrainIAK also includes a detailed set

of tutorials [22] that help the novice or expert user learn and implement the methods, including

materials relevant to running on HPC clusters. Scientists can also use BrainIAK’s simulator [23]
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to create model based patterns of activity at the voxel level, without going through the expensive

and time consuming process of data collection. The package is released with an open source license

and is free to use on a variety of platforms. The BrainIAK package welcomes contributions from

the community and new methods are continuously added to the package.

2 Methods in BrainIAK

In the sections below, we present an overview of each of the methods presently included in BrainIAK

and an accompanying example notebook. For each method, we list the data analysis problem

that it is meant to solve, and how it solves that problem. All example notebooks are available

here https://github.com/brainiak/brainiak-aperture, along with instructions on how to run them.

The notebooks also contain an annotated bibliography for each method, listing papers that have

described and/or used this method.
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2.1 Intersubject correlation (ISC)

The Problem: Measuring the Brain’s Response to Naturalistic Stimuli

One of the traditional goals of fMRI research is to measure the brain’s response to a particular stim-

ulus, task, or other experimental manipulation. Typically, this approach relies on tightly-controlled

experimental designs – by contrasting two stimuli or tasks, or parametrically varying a particular

experimental variable, we can isolate brain responses to the variable of interest. Experimentally

isolating particular variables can reduce ecological validity; in response to this, cognitive neurosci-

entists have begun to adopt more naturalistic paradigms [24]. However, using naturalistic stimuli

comes with its own set of challenges – in particular, if the stimuli are too complex to be modeled

using a small set of regressors, the standard approach of relating a design matrix to the fMRI signal

may not be practical.

The Solution

Intersubject correlation (ISC) analysis takes a different approach to this problem – instead of

trying to fully describe the stimulus in a design matrix, ISC measures stimulus-evoked responses to

naturalistic stimuli by isolating brain activity shared across subjects receiving the same stimulus

[10, 12]. When experimental participants are presented with a stimulus such as a movie or a

spoken story, their brain activity can be conceptually decomposed into at least two components:

(1) a stimulus-related component that is synchronized across subjects due to the use of a common

stimulus; and (2) a subject-specific component capturing both idiosyncratic stimulus-related signals

(e.g. unique memory and interpretation) and non-stimulus-related signals (e.g. physiological noise;

Figure 1A). ISC analysis measures the former (shared, stimulus-related) component, filtering out

the latter (idiosyncratic) component (Figure 1B).

This shared signal can be driven by different features of the stimulus in different brain regions.

For example, when listening to a spoken story, ISC in early auditory areas may be driven by

6



acoustic features of the stimulus, whereas ISC in association cortex may be driven by higher-level

linguistic features of the stimulus. In this sense, ISC is agnostic to the content of the stimulus

and serves as a measure of reliability of stimulus-evoked responses across subjects [or as a “noise

ceiling” for model-based prediction across subjects; 12, 25, 26]. This is particularly useful for

complex, naturalistic stimuli where exhaustively modeling stimulus features may be difficult. This

also allows us to leverage naturalistic stimuli to ask novel questions about brain organization. For

example, high ISCs extend from early auditory areas to high-level association cortices during story-

listening. However, if we temporally scramble elements of the story stimulus, this disrupts the

narrative content of the story; in this case, we still observe high ISC in early auditory areas, but

less so in higher-level cortices, suggesting that certain association areas encode temporally-evolving

narrative content [27, 28].

Several variations on ISC have been developed at both the implementational and conceptual

levels. For example, ISCs may be computed in either a pairwise or leave-one-out fashion, both of

which have associated statistical tests [12, 29, 30]. An important conceptual advance has been to

compute ISC across brain areas using intersubject functional correlation (ISFC) analysis [11, Figure

1D]. ISFC analysis allows us to estimate functional connectivity networks analogous to traditional

within-subject functional connectivity analysis (Figure 1C). However, unlike traditional within-

subject functional connectivity analysis, ISFC analysis isolates stimulus-driven connectivity, and is

robust to idiosyncratic noise due to head motion and physiological fluctuations [31]. Both ISC and

ISFC can be computed using a sliding window to measure coarse fluctuations in the shared signal

over time. Finally, rather than computing ISC on response time series, we can also apply the logic of

ISC to multi-voxel pattern analysis [1]. Intersubject pattern correlation analysis captures spatially-

distributed shared response patterns across subjects at each time point [e.g. 32]. Computing spatial

ISC between all time points (the spatial analogue of ISFC) enables us to discover whether certain

spatial response patterns are consistent or re-emerge over time [16].
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The Notebook

The accompanying notebook applies ISC analysis to an example fMRI story-listening dataset from

the “Narratives” data collection [33, 34]. To reduce computational demands, we compute ISC on a

time series averaged within each parcel extracted from a functional cortical parcellation [35]. We first

demonstrate high ISC values extending from low-level auditory cortex to higher-level cortical areas

during story-listening. However, when listening to a temporally scrambled version of the stimulus,

ISC is dramatically reduced in higher-level cortex areas, suggesting these areas encode temporally-

evolving features of the stimulus (e.g. narrative context). We next perform a similar comparison

between intact and scrambled story stimuli using traditional within-subject functional connectivity

and ISFC analysis. The networks estimated using within-subject functional connectivity are similar

across the two types of stimuli, while ISFC analysis yields very different networks for the intact and

scrambled stories. BrainIAK also offers several nonparametric statistical tests for ISC and ISFC

analysis, some of which are discussed in the notebook.
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Figure 1: Schematic of ISC and ISFC analysis. A. The measured response time series (maroon)
can be decomposed into three components: a consistent stimulus-induced component that is shared
across subjects (red), an idiosyncratic stimulus-induced component (gold), and an idiosyncratic
noise component (gray). B. ISC is computed between two homologous brain areas (maroon and
orange) across subjects, thus isolating the shared, stimulus-induced signal from idiosyncratic signals.
C. Typical functional connectivity analysis is computed within subjects across brain areas. D.
ISFC is computed across both subjects and brain areas. ISFC analysis provides functional network
estimation analogous to within-subject functional connectivity analysis, but isolates the shared,
stimulus-induced signal and is robust to idiosyncratic noise. E. The diagonal of the ISFC matrix
comprises the ISC values.
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2.2 Shared response model (SRM)

The Problem: Aligning Brain Data Across Participants

One of the main obstacles in leveraging brain activity across subjects is the considerable heterogene-

ity of functional topographies from individual to individual. Variability in functional–anatomical

correspondence across individuals means that even high-performing anatomical alignment does not

ensure fine-grained functional alignment [e.g., 36]. As an example, multi-voxel pattern analysis

models that perform well within subjects often degrade in performance when evaluated across

subjects [e.g., 37, 38].

The Solution

SRM [13], alongside other methods of hyperalignment [39–41], aims to resolve this alignment prob-

lem by aligning based on functional data. SRM estimation is driven by the commonality in func-

tional responses induced by a shared stimulus (e.g. watching a movie). Unlike ISC analysis,

which presupposes (often very coarse) functional correspondence, SRM isolates the shared response

while accommodating misalignment across subjects. SRM decomposes multi-subject fMRI data

into a lower-dimensional shared space and subject-specific transformation matrices for projecting

from each subject’s idiosyncratic voxel space into the shared space (Figure 2). Each of these topo-

graphic transformations effectively rotates and reduces each subject’s voxel space to find a subspace

of shared features where the multivariate trajectory of responses to the stimulus is best aligned.

These shared features do not correspond to individual voxels; rather, they are distributed across

the full voxel space of each subject; each shared feature can be understood as a weighted sum of

many voxels.

Transformations estimated from one subset of data can be used to project unseen data into

the shared space. Projecting data into shared space increases both temporal and spatial ISC

(by design), and in many cases improves between-subject model performance to the level of within-
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subject performance. Between-subject models with SRM can, in some cases, exceed the performance

of within-subject models because (a) the reduced-dimension shared space can highlight stimulus-

related variance by filtering out noisy or non-stimulus-related features, and (b) the between-subject

model can effectively leverage a larger volume of data after functional alignment than is available

for any single subject. De-noised individual-subject data can be reconstructed by projecting data

from the reduced-dimension shared space back into any given subject’s brain space. Furthermore,

in cases where each subject’s unique response is of more interest than the shared signal, SRM can

be used to factor out the shared component, thereby isolating the idiosyncratic response for each

subject [13].

Building on the initial probabilistic SRM formulation [13, 42], several variants of SRM have

been developed to address related challenges. For example, a fast SRM implementation has been

introduced for rapidly analyzing large datasets with reduced memory demands [43]. The robust

SRM algorithm tolerates subject specific outlying response elements [44], and the semi-supervised

SRM capitalizes on categorical stimulus labels when available [45]. Finally, estimating the SRM

from functional connectivity data rather than response time series circumvents the need for a single

shared stimulus across subjects; connectivity SRM allows us to derive a single shared response space

across different stimuli with a shared connectivity profile [46].

The Notebook

The accompanying notebook applies the SRM to an example fMRI story-listening dataset from the

“Narratives” data collection [33]. We apply the SRM within a temporal parietal region of interest

comprising auditory association cortex from a functional cortical parcellation [35], and explore the

components of the resulting model. We evaluate the SRM using between-subject time-segment

classification. This analysis reveals that the SRM yields a considerable improvement in between-

subject classification beyond anatomical alignment.
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Figure 2: Schematic of the shared response model (SRM). (a) Data are typically split into a training
set (light gray) used to estimate the SRM and a test set (dark gray) used for evaluation. The SRM is
estimated from response time series from the training set for multiple subjects (top left; transposed
here for visualization). The multi-subject response time series are decomposed into a set of subject-
specific orthogonal topographic transformation matrices and a reduced-dimension shared response
space. The learned subject-specific topographic bases can be used to project test data (bottom left)
into the shared space. This projection functionally aligns the test data.
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2.3 Full Correlation Matrix Analysis (FCMA)

The Problem: Computationally Tractable Analysis of the Complete Functional Con-

nectivity Matrix

Functional connectivity (FC) refers to coupling of activity in different regions of the brain; it is

typically measured as the temporal correlation of BOLD activity across voxels. To assess FC in an

unbiased way over the entire brain would require calculating the correlation across all pairs of voxels.

However, given the number of voxels in most datasets, this is computationally challenging and

results in data with very high dimensionality that are hard to analyze or interpret [47]. To address

this, traditional analyses of FC have restricted the number of voxel correlations, either by using one

or a small number of “seed” regions (pre-selected sets of voxels with which all others are correlated;

akin to ROIs in standard analyses) or by parcellating the brain into larger regions [48] and then

correlating the mean activities of the parcels. However, both approaches require assumptions and

provide a coarse view of FC. Seed-based approaches are constrained to measuring FC with respect

to only the seeds, and thus the selection of the seeds can bias the results. Parcel-based approaches

are constrained by how the parcels are defined, and assess FC with lower spatial resolution because

multiple voxels are averaged per parcel.

The Solution

FCMA (Figure 3) is entirely data-driven and does not require the specification of initial seed

regions or parcellations to reduce computational burden [49]. Rather, FCMA performs classification

on the pattern of whole-brain connectivity for every voxel in the brain, effectively running all

possible (usually thousands of) seed-based classification analyses at once. This provides a voxel-

level measure of classification performance that can be used in several ways. First, this can serve

as a form of feature selection, restricting further analysis of (independent) data to voxels with the

best correlation-based classification performance. Second, it can drive discovery by revealing not
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only functional regions known to be involved in a task because of their activation, but also regions

previously overlooked because their FC but not activation is selective [e.g., 50]. That is, FCMA

can reveal regions that are functionally coupled in a task-dependent manner without use of a priori

seed regions or parcellations, where these regions might not otherwise be found using standard

activation-based analyses.

A. Full Correlation Matrix

B. Voxelwise Feature Selection C. Subsequent Analyses on Selected Features
Classification of left out dataMapping of Top Voxels Network analyses

fMRI Data with N Voxels
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BOLD Timeseries data for each voxel

Classification Accuracy of
Condition A vs Condition B

Number of Top Voxels

C
la
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y

V1

= .56

V2

= .87 

VN

= .66...

Correlations for all voxel-to-voxel pairs

V1

V2

VN

...

...

r12

r1N

Calculate all pairwise correlations between all voxels in 
the brain for two or more conditions or groups

For each voxel, use pattern of correla-
tions with rest of brain for classification

Figure 3: Full Correlation Matrix Analysis (FCMA). A. FCMA leverages several computing
optimizations to permit calculation of full functional connectivity between all voxels in the brain;
B. By default, FCMA then performs SVM classification on each voxel’s pattern of connectivity
with the rest of the brain in order to assess how well each pattern differentiates two conditions
or groups; C. The best performing voxels from B can then be used to guide additional analyses
including visualizing/mapping top voxels, analysis of nodes and edges using graph theory-based
metrics, and classification of patterns of connectivity from held-out data.

FCMA calculates the full correlation matrix at the voxel level, that is, the correlation of every

voxel with every other voxel for any given set of time windows in a dataset. In multi-condition,

multi-subject datasets, this is a massive computation: for example, a typical dataset with ∼30,000

voxels has ∼450,000,000 voxel pairs. The computational load only grows if the correlation ma-

trix is computed for multiple time windows, as is often the case.. To make this more tractable,
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FCMA leverages several optimizations, including high-performance kernels to calculate and classify

correlations and Message Passing Interface (MPI) [51] to distribute the parallelizable tasks among

multiple compute nodes. These optimizations make it possible to use the full correlation matrix

computation in offline analysis and also in circumstances that require rapid calculation of FC data

(e.g., real-time imaging, bootstrap hypothesis testing).

While it uses sophisticated algorithms to calculate the full correlation matrix, FCMA is in-

tended to be accessible and highly flexible. FCMA relies on a customized, high-performance SVM

classifier [52] and can be ported to other classification algorithms with Scikit-learn-like interfaces.

It can handle many different experimental designs and classification preferences (e.g., within- or

across-subject classification).

The Notebook

The notebook illustrates the utility of FCMA across 3 steps. First, using a nested cross-validation

procedure, it shows how to identify the set of voxels whose pattern of functional connectivity

differentiates two hypothetical experimental conditions. Second, the notebook shows how to use FC

in these selected voxels to successfully perform classification on held-out data. Third, it highlights

how FCMA can provide useful results that can be visualized to test specific hypotheses or perform

exploratory analyses.
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2.4 (Group) Bayesian RSA

The Problem: Unbiased Estimation of Neural Similarity Structure

Representational Similarity Analysis (RSA) [2, 26, 53] is a method for quantifying the structure

of the representational space in a brain region, either for external stimuli or for cognitive pro-

cesses of interest. The traditional approach to RSA first estimates neural activity patterns for each

task condition from fMRI data using the general linear model or directly uses raw fMRI patterns,

and then calculates their pair-wise (dis)similarity using metrics such as Euclidean distance, Ma-

halanobis distance or Pearson correlation between the estimated patterns. As shown in several

papers [14, 15, 54, 55], this approach can introduce spurious similarity structure if neural patterns

are estimated based on events happening close in time. This spurious similarity structure arises

from the interaction between the auto-correlation in the task-unrelated fMRI fluctuations and the

intrinsic correlational structure of the design matrices used when estimating neural patterns [14, 15].

The Solution

Bayesian Representational Similarity Analysis (BRSA) [14, 15] tackles this problem by simultane-

ously modeling two sources of contribution to the temporal correlation structure in the fMRI data:

task-related signals and task-unrelated fluctuations. As shown in Figure 4A, it models the true

task-related responses (defined as responses reproducible by a repetition of task condition) as sam-

ples drawn from a multi-variate Gaussian distribution, the covariance structure of which underlies

the representational similarity structure of interest. The spontaneous neural activity and scanner

noise contribute additional spatial and temporal correlation to the data, which are explicitly mod-

eled by BRSA. By marginalizing out the unknown spatial patterns of the neural response to each

task condition, as well as the the task-unrelated spontaneous activity patterns (Figure 4B), BRSA

calculates the log likelihood of obtaining the whole-brain fMRI data given any possible covariance

structure of the task-related response. It then searches for the covariance structure that maxi-
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mizes the log likelihood, and converts this covariance structure to a correlational structure, which

serves as an estimate of the representational similarity. This approach significantly reduces the con-

founding similarity structure arising from the interaction between task-unrelated fMRI signal and

the deconvolution procedure for estimating neural activation patterns in traditional RSA (Figure

4C). In addition, BRSA can be extended to estimating representational structure from a group of

participants, with the assumption that a common representational structure is shared by all par-

ticipants. This approach is called Group Bayesian RSA (GBRSA; [15]). Notably, Bayesian RSA,

like SRM (described above) and topographic factor analysis (described below), is a low-dimensional

factor model of fMRI data; these models only differ in their prior assumptions about the spatial or

temporal properties of the factors, and the quantities they aim to estimate [56].

  

Parameters of 
spatiotemporal 
properties of noise

Activation patterns

fMRI data Y

Covariance 
structure 
(similarity) U

log p(Y∣U )Marginalize activity 
patterns and other 
parameters to obtain

simulated ground truth

Bayesian RSA

traditional RSA

theoretical spurious 
structure

A.  U

Y

Maximize

B. C.

Generative model of Bayesian RSA Bayesian RSA directly infers similarity

p(Y∣U )

Figure 4: Overview of (G)BRSA. A. (G)BRSA assumes a hierarchical generative model for fMRI
data, where a hypothetical covariance structure governs the distribution of response amplitudes of
each voxel to different task conditions (here we take four images as an example), and the response
amplitudes in turn contribute task-evoked responses to the fMRI data according to the design
matrix. Other parameters determine the spatial and temporal properties of noise (and sponta-
neous activity). Arrows indicate causal relations in a probabilistic graphical model. B. (G)BRSA
marginalizes out intermediate variables that contribute to fMRI data, making it possible to com-
pute the log likelihood of the fMRI data Y given the covariance structure U (the arrow with dashed
contour); the algorithm then finds U that maximizes this log likelihood (the solid arrow), which
can be converted to a similarity matrix of activation patterns. C. BRSA significantly reduces bias
(spurious similarity structure) compared to traditional RSA on a simulated dataset with 16 task
conditions. The four figures are (from top to bottom) the ground truth similarity structure in the
simulated data, similarity structure recovered by BRSA and traditional RSA, respectively, and the
theoretically derived spurious structure arising from the interaction between fMRI noise and the
design matrix. (Figure C reproduced from [15])
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The Notebook

BrainIAK’s reprsimul.brsa module contains two models, BRSA and GBRSA. The BRSA model

follows the algorithm in [57], with the improvement that it also models spatial noise correlation.

In addition to modeling spatial noise correlation, the GBRSA model marginalizes voxel-wise pa-

rameters such as signal-to-noise ratio and temporal auto-correlation coefficients of noise, and can

estimate similarity structure from either a single participant or from a group of participants. The

notebook accompanying this paper illustrates the usage of GBRSA on a group of simulated par-

ticipants. Readers can easily adapt the example to the case of a single participant by providing

only one participant’s data to the model. The notebook also illustrates additional functions of

the model: decoding task-related signals from new data and cross-validating the fitted model to

left-out data. It further provides tips for detecting false discoveries when the data contain too little

task-related activity, with an example case of fitting a model to data composed of pure noise.
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2.5 Event Segmentation

The Problem: Tracking How the Brain Segments Continuous Inputs Into Discrete

Chunks

Foundational work in cognitive psychology [58, 59] has demonstrated that humans segment continu-

ous inputs into discrete chunks (events). One way to study the neural basis of this chunking process

is to have human annotators mark event boundaries [60], and then relate these human annotations

to neural data. However, annotations are not always available, and other levels of chunking may

be present in the brain besides the level corresponding to the annotations; as such, it would be

beneficial to have a more data-driven way of studying how the brain chunks its inputs, other than

relating on annotations.

The Solution

To address this problem, Baldassano et al. [16] introduced a hidden Markov model (HMM) approach

designed to identify stable neural states at varying timescales. This model can be applied to

responses during perception of one or more stimuli with aligned event structure [61], to independent

annotations or latent variables [62], or to align event structure between perception and free recall.

Although we describe its use for analyzing fMRI data, this model has also been used to analyze

EEG data [63].

The HMM assumes that brain regions are always in some discrete (unobserved) event state. Our

goal is to compute a probabilistic estimate of event identity at each timepoint (TR), given a TR x

Voxel array of the neural response to some stimulus. The model makes three key assumptions: 1)

On every TR, the brain region stays in the same event as the last TR or advances to the next event;

2) the brain region starts in the first and ends in the last event; and 3) events are associated with

distinct spatial patterns across voxels, such that the pattern at every TR within an event consists

of this event-specific pattern plus random noise.
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We can perform inference in the model in several ways, as shown in Figure 5:

• We can fit the model on a TR x Voxel dataset by iteratively alternating between estimating

event patterns and estimating TR probabilities for each event. The number of events must

be pre-specified, but cross-validation can be performed to determine the optimal number.

This approach has previously elucidated how event structure can be represented at multiple

timescales [16].

• If we already know the event-specific patterns (e.g., from an independent task), we can create

a model with these patterns and infer event probabilities on a TR x Voxel dataset of neural

responses.

• If there are multiple datasets (with aligned voxels but different numbers of TRs) that share

the same event sequence (e.g., responses to different versions of the same narrative, or to

perception and recall of the same narrative), we can find shared event patterns across datasets

and the per-TR event probabilities for each dataset.

The Notebook

The corresponding notebook demonstrates how to fit the HMM to real movie-watching data, align

neural event boundaries with annotations, and apply the HMM to recall data [16]. Note that the

eventseg package includes two extensions beyond the original paper [16]:

• You can define multiple “chains” of events rather than a single sequence. For example, if

subjects recalled one of multiple stories, a separate event chain could be defined for each

story and the model will assume that recall is equally likely within any separate chain.

• You can perform a more exhaustive fitting procedure when estimating the event patterns. This

(slower) approach attempts to split events or merge neighboring events for better allocation

throughout the time series.
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Figure 5: Use cases for the event segmentation model.
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2.6 Topographic Factor Analysis (TFA)

The Problem: Efficiently Describing Network Structure

As neural datasets are often large, studying network patterns that require huge (O(n2)) time and

space to compute can be intractable. One way to address this is the approach used by FCMA (i.e.,

using optimized computations to obtain the entire voxel × voxel correlation matrix). However, these

full-connectivity patterns (because of their size) can be challenging to work with in downstream

analyses. Further, summarizing patterns of correlations often requires additional analyses whereby

voxels are thresholded and/or grouped into spatially contiguous clusters or regions of interest.

The Solution

TFA [64, 65] takes a different approach, exploiting the strong spatial correlations in fMRI data [e.g.,

66] to derive a lower-dimensional description of the data that lends itself to efficiently characterizing

full-brain connectivity patterns. Given a time series of 3D fMRI volumes, TFA finds a basis set of

spherical “nodes” placed throughout the brain; each of these nodes represents a contiguous set of

voxels (Figure 6A). (Non-spherical regions may be approximated using multiple spherical nodes.)

Each brain image may then be described as a weighted sum of the images for each node (Figure 6B).

When multi-subject data are available, the locations and sizes of the nodes are constrained to be

similar across people (Figure 6C). Applying TFA to a multi-subject fMRI dataset yields a “ball

and stick” representation of its underlying network dynamics (Figure 6D).

TFA works by defining a generative model for fMRI data. According to the model, data are

generated by first choosing an appropriate number of nodes, K, and then assigning their locations

and sizes within a global template that parameterizes a model of the “prototypical” participant

(Figure 6C). Next, each individual participant’s nodes are selected by adding noise to the global

template’s nodes (Figure 6C). In this way, this global template serves as a prior for the per-

participant models, thereby ensuring that different participants’ nodes share similar locations and
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Subject-specific templates

A. B. C. D.
Global template-1 1

Figure 6: Topographic Factor Analysis. A. Spherical nodes describe contiguous sets of
similarly behaving voxels. Each node is represented as a radial basis function. A node’s image
may be constructed by evaluating its radial basis function at the locations of each voxel. Level
curves for several example nodes fit to a synthetic 3D image are outlined in white; ×s denote the
node centers projected onto the 2D slice displayed in the panel. B. Brain images are described
by weighted sums of the nodes’ images. After computing each node’s image (using its ra-
dial basis function), arbitrary brain images may be approximated using weighted combinations of
the images for each node. The per-image weights may be used as a low-dimensional embedding
of the original data. A 2D slice of the reconstruction for the image displayed in panel A demon-
strates how contiguous clusters of voxels are approximated using weighted activations of spherical
nodes. C. The global template serves as a prior for subject-specific parameters. The
global template defines the numbers of nodes, their locations, and their sizes, for the prototypical
participant. Each individual participant’s parameters (node locations and sizes) are fit using the
global template as a prior. This provides a linking function between different participants’ nodes,
thereby enabling across-subject comparisons. A subset of the nodes outlined in Panel A are dis-
played in the global template cartoon. The positions of these nodes in each individual participant’s
subject-specific template are displayed in different colors. D. A “ball and stick” representa-
tion of network connections. The level curve of each node defines a spherical ball (gray). The
per-image node weights may be used to infer static or dynamic functional connectivity patterns
(i.e., correlations) between nodes: red “sticks” represent positive connections, blue sticks represent
negative connections, and stick thickness is proportional to connection strength.)
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sizes. Finally, TFA assigns per-timepoint activations to each node (Figure 6B). The fMRI volumes

are generated by sampling the node activation patterns at the voxel sampling resolution of the

images (Figure 6A). Applying TFA to an fMRI dataset entails “reversing” this generative process:

given the fMRI data from each participant, the goal is to discover the most probable number of

nodes, as well as the node locations and sizes, for each individual participant. TFA also estimates

the global template, which may be used to summarize or align multi-subject data (analogous to

spatially warping fMRI data to align with a reference image).

By merging spatially nearby clusters of voxels whose responses are similar, TFA provides a highly

efficient representation of neural data. Whereas approaches such as BrainIAK’s FCMA compute

full-resolution brain correlation matrices at the level of individual pairs of voxels, TFA computes

a lower resolution approximation of full-brain correlation matrices (where the resolution depends

on the choice of the number of nodes, K; the approximation becomes exact as K approaches the

number of voxels). In this way, TFA is a convenient way of studying coarse spatial scale full-brain

network dynamics. A second useful property of TFA is its resolution independence. Because TFA’s

nodes exist in “real space” rather than in the measurement space of the brain data (i.e., as voxels),

the approach provides an elegant means of comparing or combining data at different resolutions.

The Notebook

In our companion notebook, we provide an example of how TFA may be applied to a multi-subject

fMRI dataset in order to examine the underlying network dynamics. We also provide several

examples of how to visualize those dynamics using a variety of animations.
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2.7 Inverted Encoding Model (IEM)

The Problem: Incorporating Hypotheses about Stimulus Encoding into Decoding

Models

Neural decoding algorithms estimate some function g(R) to map a measured neural response R

to a stimulus S [1, 19]. Most of these decoding approaches are agnostic about how the stimuli

are encoded in the brain (e.g., the use of a linear classifier like logistic regression simply assumes

that stimulus classes are linearly separable in the space defined by the voxel activity patterns,

without making any further assumptions about the mapping between stimulus properties and voxel

activity values). This “encoding agnostic” approach may be appropriate in situations where little

is known about how the stimuli are encoded [19]. However, in situations where researchers have

clear hypotheses about how stimuli are encoded, building this information into the decoder could

serve as a useful source of constraints on the analysis, as well as a means of arbitrating between

these hypotheses.

The Solution

Inverse encoding models (IEMs) are designed to solve exactly this problem (i.e., of using hypotheses

about encoding to inform how decoding takes place). The IEM approach involves first training an

encoding model, which involves estimating some function f(S) to map stimulus features S to

response R [18, 19]. Most encoding models assume that each voxel’s activity is determined by a

weighted linear combination of a set of stimulus features (Figure 7). For example, [67] constructed

features that tiled color space, assuming that each voxel had some distribution of sensitivity to

these color features, and solved for the weights W on those features. One can then define g(R)

by inverting W to reconstruct the stimulus, yielding the IEM (Figure 7A). This approach makes

it possible to predict output stimulus features never seen in the training set (e.g. predicting an

orientation of 142◦ when only 120◦ and 150◦ were shown). As noted above, by incorporating
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assumptions that more closely match the structure of the data, the IEM can, in principle, be more

powerful than other decoding approaches – that is, an IEM may be able to succeed in situations

where linear decoders like Support Vector Machines (SVMs) fail [68].

The IEM also allows experimenters to address more nuanced hypotheses about stimulus encod-

ing. For example, [69] used it to test how attention shaped neural responses to oriented gratings

under different conditions (Figure 7B). The reconstructed stimuli can also serve as a proxy for the

representation in some region of interest, e.g., allowing experimenters to examine how the contents

of visual working memory can be simultaneously represented with distracting perceptual inputs

[70, 71]. Others have used the IEM to answer questions about prediction in the hippocampus [72]

and memory-guided navigation in several regions of the brain [73]. See [74] for advice on the proper

use of IEMs; further guidance is provided in the BrainIAK examples.

The Notebook

In the IEM notebook, we provide easily visualized reconstructions of 1-dimensional and 2-dimensional

stimuli. Even with data from a single subject, we can begin to see how the experimental manipula-

tions affect the stimulus reconstructions. We also provide simulations showing that SVM decoding

results can be less accurate than IEM decoding results with small amounts of data.
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Figure 7: Inverted encoding model. A. Inverting the forward encoding model to reconstruct
the stimulus feature, orientation. First, the experimenter specifies some nonlinear transformation
of the stimulus into a representational space. Here, orientations of Gabor gratings are transformed
into activations on a set of orientation channels C that tile the stimulus space. Then, the fMRI
responses B are predicted by solving the linear equation B = WC. To reconstruct stimulus features
with a new set of data B2, we simply invert W to predict a new C2. B. IEMs allow experimenters to
test detailed hypotheses about stimulus representations. [69] tested the off-channel gain hypothesis
(figure adapted with permission). According to this hypothesis, when discriminating between very
similar features, it is optimal to enhance the responses of channels close to the relevant feature,
rather than directly enhancing the relevant feature. Using an IEM for stimulus orientation, [69]
demonstrated off-channel gain enhancement when subjects performed a difficult orientation dis-
crimination task, compared to when subjects performed a contrast discrimination task on the same
stimuli.
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2.8 fmrisim

The Problem: Simulating Realistic fMRI Data

Methods for analyzing fMRI data have blossomed in recent years, yet there is a concurrent need to

understand how best to use these methods. Simulations of fMRI data can aid in both the evaluation

of complex designs and the analysis of data. Software packages have been created that offer flexible

simulation of fMRI data [75–77]; however, no package was designed explicitly for simulating data

for multivariate analyses. Moreover, no available packages can generate simulated data with noise

properties that are matched to an existing fMRI dataset.

The Solution

To fill in this gap, we developed fmrisim [23], an open-source Python package for simulating realistic

fMRI data. fmrisim linearly combines a number of noise sources, inspired by biology and MRI

physics, that are tuned in a data-driven fashion to match specific fMRI data that is provided as an

input. Through an iterative fitting procedure, the noise properties of the simulation are updated

to optimize the match of the simulated data to the real data (Figure 8). We previously validated

that this fitting procedure produces accurate simulations of real data [23]. We have used fmrisim

to evaluate the power of different experimental design parameters [23], and also to evaluate the

efficacy of new analysis methods [78, 79].

fmrisim can be utilized in two main ways by researchers. First, it can be used to explore

and optimize different experimental design parameters and analysis pipelines. This is particularly

valuable in the case of complex, multivariate designs where traditional methods for evaluating design

efficiency [80] may be inappropriate. Second, fmrisim can be used to pre-register an experiment

design and analysis pipeline to conduct confirmatory hypothesis testing. By establishing an analysis

pipeline before any data is collected, simulation can be used as a sandbox to tune the analysis

pipeline for testing a specific hypothesis, without compromising any real data. Hence, fmrisim
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Figure 8: Example of the spatial and temporal structure of real and simulated data. The real data
(top row) was input into fmrisim and produced simulated data (bottom row). A. depicts the spatial
structure of real data (top) and fitted simulated data (bottom). B. shows the time course of sample
voxels and C shows the power spectra of a sample of high-pass filtered voxels. Reproduced from
[23].

offers a unique opportunity to conduct explicitly confirmatory research with fMRI. Considering

these use cases together, we believe fmrisim is a valuable tool to help researchers conduct more

reproducible fMRI research.

The Notebook

The corresponding notebook for fmrisim illustrates the simulation of a dataset and how it can be

used for analysis. The hope is that this can be used as a template for simulating your own study.

This notebook takes in an example functional dataset and simulates new data with the same noise

properties as this real data. It performs each step of noise simulation individually, in order to

give the reader a sense of what is being done. Signal is then inserted into the data. The signal

is a multivariate pattern of voxel activity evoked by events from different fictious conditions. A

classification analysis is then performed to evaluate these block differences.
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2.9 Emerging Methods

This section of the paper describes new tools that are coming soon to the BrainIAK toolbox or

were just added.

2.9.1 Topological Data Analysis (TDA) and Geometrical Analysis

Innovations in TDA have generated remarkable new insights in neural coding [81–83]. The BrainIAK

Extras repository provides a wrapper for PHAT [84], a C++ library for high-performance persistent

homology. Future extensions may include wrappers for Rivet [85], a C++ package for multiparam-

eter persistent homology.

Alongside TDA, geometric methods are starting to gain traction in neuroscience data analysis

[83, 86], specifically as a tool to study how entangled and disentangled feature dimensions interact

to determine neural codes across multiple contexts [87, 88]. Lightweight implementations of these

methods are currently being developed in BrainIAK for investigating context-dependent cognitive

feature representations. These implementations will include several practically-motivated tech-

niques to address problems associated with large and/or incomplete datasets, as well as diagnostic

tools for cross-validation of findings. Utilities for efficient organization and formatting of user data

will also be included.

2.9.2 Matrix-normal models

Many models for fMRI analysis are framed as linear regression or factor models with gaussian

noise. This includes variants of SRM, RSA, TFA, and ISFC (all discussed earlier in this article),

the conventional fMRI generalized linear model (GLM), and others. Typically these models assume

independently normally-distributed residuals in either the spatial or temporal dimension (and often

both). To match the data to these independence assumptions, traditional approaches often pre-

process their data to remove spatiotemporal correlations altogether. However, if the preprocessing
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model is misspecified (which is always true to some extent), fully removing these correlations re-

moves some signal alongside the noise. In contrast, structured-residual models, herein called matrix

normal (MN) models, choose to jointly model the “signal” alongside the “noise” or residual covari-

ance, letting the same model apportion signal relative to noise. Shvartsman et al. [89] proposed

to introduce spatiotemporally-structured residual covariance to a number of the models discussed

above, showing improved reconstruction performance for MN-SRM and faster and more conserva-

tive behavior for MN-RSA, as well as a derivation of matrix-normal ISFC (which is shown to be

highly similar to SRM, mathematically). To enable further prototyping of fMRI models with spa-

tiotemporally structured residuals, BrainIAK includes a model prototyping toolkit for such models,

as well as examples of matrix-normal variants of some existing methods.

3 Future Directions: Real-Time fMRI Analysis

Real-time functional magnetic resonance imaging (RT-fMRI) is an emerging technology that can be

used to provide cognitive training to participants inside of the MRI scanner [90, 91]. Participants

can receive neurofeedback (i.e., information about their current neural state) to help them modify

their thinking to achieve a certain goal (e.g., increasing the amount of activation within a brain

region of interest, given a thermometer visualization as feedback). Researchers can also use an

adaptive experimental design where they adjust stimuli in response to the participant’s present

neural state, with the goal of driving the system into a desired neural state. These two types of

neurofeedback have been effectively used in numerous studies, both in non-clinical [e.g., 92–95] and

clinical populations [e.g., 20, 96–99].

Supporting real-time analysis is a major goal of the BrainIAK project going forward. In this

section, we describe our framework for incorporating real-time analysis into BrainIAK, and we

provide an accompanying notebook that demonstrates this framework.
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The Problem: Making Real-Time fMRI Analysis More Accessible

Implementing a real-time experiment currently has significant barriers to entry. Computer pro-

cessing during real-time runs – including detecting and loading MRI images, performing image

registration, updating classification models, providing participant neurofeedback, and recording

subject responses – must be completed quickly enough to provide timely feedback (ideally within

1-2 seconds). These processes generate high computer load and require network communication

between computers in real-time; successfully implementing this kind of pipeline requires diverse IT

and programming skills. Existing software frameworks have helped researchers to better implement

RT-fMRI studies. However, many of these packages have one or more issues that limit their us-

ability; e.g., they may require licensed software or advanced computing skills on the part of the

researchers.

The Solution

Our goal is to make real-time fMRI more easily accessible to neuroscience researchers. To do this,

we are developing a software framework, described in Figure 9, that streamlines the process of de-

veloping experiments, allowing the researcher to focus on only the code specific to their experiment.

Our framework uses cloud computing, which mitigates the economic burden of buying hardware

and makes experiment set-up easier by eliminating the requirement to install hardware and software

in the control room. It also uses a Software-as-a-Service (SaaS) model, which provides a consistent

remote installation accessed through a web browser. With the SaaS model, users do not need to

maintain their own software installations, thereby avoiding potential problems with OS versioning,

library mismatches and memory limitations. The SaaS model also allows for remote testing and

configuration. Unlike a typical SaaS that uses a specific cloud service, our framework allows users

to run RT-fMRI data analysis on their choice of system (including their institution’s own comput-

ing cluster), which can help users meet regulatory requirements. The combination of using cloud

computing and the SaaS model in our framework has the potential to facilitate growth in the field
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– for example, by making it easier to deploy the system in hospitals and other clinical settings that

might benefit from RT-fMRI research.

Figure 9: Schematic of our cloud-based software framework for real-time fMRI experiments. The
framework has two main components: the FileWatcher and the ProjectInterface. (1a) The File-
Watcher watches for the arrival of new DICOM images on the scanner computer and (1b) forwards
the image to the ProjectInterface, running on the cloud. (2) The ProjectInterface, which wraps
the experimenter’s code, processes the DICOM data and runs the experimenter’s analysis code to
obtain a measure of the participant’s brain state. The experimenter accesses the cloud application
from a browser page that can run on a laptop. Among other things, the experimenter can initi-
ate/finalize the session, change settings, and even observe the graph output of the analysis results.
(3) The analysis results are provided to the participant as visual neurofeedback presented on the
projector in the MRI room.

The Notebook

Our companion notebook walks through an example of running our real-time software pipeline. It

uses a sample script that builds and then applies a multivariate pattern classifier to synthetic fMRI

data. The synthetic data is generated using the BrainIAK simulator (fmrisim) and is transferred

to the sample script, in the Jupyter notebook, for processing. In a real deployment, this processing

would be running in the cloud.
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4 Tutorials

The Problem: Learning Advanced fMRI Analysis

It is usually quite challenging for a new user to learn advanced fMRI analysis. There are three

main challenges in applying BrainIAK methods. First, one needs to learn Python, a language

that has only recently gained traction in psychology and neuroscience departments. Second, the

analyses require knowledge of machine learning techniques that may be unfamiliar to cognitive

neuroscientists. Third, these methods need to be executed on high performance compute clusters,

a task that is non-trivial for even advanced practitioners.

The Solution

To overcome the challenges of applying BrainIAK methods, we have created a set of tutorials for

advanced fMRI analysis (https://brainiak.org/tutorials) that are user-friendly, free to use, and open-

source [22]. These tutorials complement other learning resources that have become widely available:

e.g., Nilearn documentation (https://nilearn.github.io/auto examples/index.html), scikit-learn tu-

torials (https://scikit-learn.org/stable/auto examples/index.html), the Neurostars forum (https:

//neurostars.org) [100], and Neurohackademy videos (https://neurohackademy.org/course type/

lectures/).

The BrainIAK tutorials cover 13 topics in fMRI analysis: setup, data handling, classification [1],

dimensionality reduction, classifier optimization, RSA [2, 26] searchlight [101], seed-based con-

nectivity, FCMA [50], ISC [10] and ISFC [11], SRM [13], event segmentation [16], and real-time

analysis [94]. Each tutorial is a Jupyter notebook [102] that provides a step-by-step introduction

to one method. The materials are designed for individuals with only basic knowledge of fMRI,

cognitive neuroscience, and Python coding. Hence, detailed background information is provided

for each method and dataset to introduce novices to the material. We show users how to avoid

pitfalls like circular inference [103], and handle complexities that arise when working with large
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datasets. Moreover, the code is commented to support learning. Exercises are provided to encour-

age a deeper understanding of the methods. The methods are integrated with Nilearn functions

for loading and manipulating neuroimaging data, and machine learning functions from scikit-learn.

The tutorials are run on preprocessed datasets taken from experiments published in the literature.

These datasets include block-design experiments, naturalistic movies, people listening to stories, and

simulated datesets for real-time analysis. To scaffold the transition to using a high-performance

computer cluster in order to analyze data at scale, we also explain how to use a SLURM scheduler

and how to estimate memory and execution time for jobs, and we provide batch scripts to help the

learner acquire this complex skillset. These tutorials have now been used in semester-long courses

at Princeton and Yale. The feedback from these courses, along with those from hackathons and

workshops, has helped to refine the tutorials.

The Notebooks

The tutorials are available at https://brainiak.org/tutorials. They are modular and can be run

independently. We provide recommendations on where to start based on the skill level of the user.

Hackathons are a particularly suitable environment to utilize these tutorials since new participants

can both learn from these tutorials and improve their documentation. To increase accessibility and

flexibility for different usages, we provide a variety of installation options for the tutorials with a

Docker container, Conda, and even a cloud option using Google Colaboratory.

5 Optimizations and Scalability

Several of the methods in BrainIAK incorporate algebraic, algorithmic, and computing optimiza-

tions that make it possible to scale the analyses to high-resolution images and large numbers of

subjects. Furthermore, BrainIAK uses parallel and distributed processing via Python multiprocess-

ing as well as standard HPC technology (OpenMP and MPI).

35

https://brainiak.org/tutorials


Searchlight analysis is a good target for a scalable implementation, since all searchlights are

independent and can hence be executed in parallel. Searchlight analysis performs a separate config-

urable analysis for every voxel in the brain by passing a moving window over the brain, and limiting

consideration to only local voxels at each step [101]. Our implementation automatically parallelizes

over the cores available in the CPU using Python multiprocessing, even when running on a laptop.

The same code can be run unmodified on an HPC cluster and can run in parallel over cluster nodes

if launched as a set of MPI processes. Input data are automatically distributed in the cluster from

the first MPI process and output is automatically collected. The data distribution across processors

can be done by either distributing each subject to a different processor or splitting sets of voxels to

different processors. Finally, to help non-experts take advantage of cluster execution, we provide

a comprehensive tutorial that includes scaling advice, e.g., estimating memory requirements (see

tutorial: https://brainiak.org/tutorials/07-searchlight/).

In FCMA [52], the most computationally-intensive part of the analysis involves a three-stage

pipeline: correlation computation, within-subject normalization, and voxelwise SVM cross-validation.

To optimize for modern processors, we reduce the computation of Pearson correlation between voxel

pairs to the multiplication of a voxel-by-time matrix and its transpose, by normalizing the data

within each time epoch. Although many libraries such as Intel MKL have been optimized exten-

sively for matrix multiplications, they do not perform well for whole-brain fMRI datasets, which

typically involve tall-skinny matrices with large numbers of voxels and few timepoints. We employ

several special optimizations for modern processors. First, we partition tall-skinny matrices into

block matrices to fit the small amount of memory built into the CPU (L2 cache) for each thread.

Second, the cache contents are retained across stages of the procedure pipeline by merging (fusing)

two computation stages. In other words, when the current stage finishes the computations of a

blocked matrix, it proceeds with the next stage computation of this block without waiting for other

blocks of the current stage to complete. Third, we carefully design data structures and workflow

for vectorization. Such optimized single-node code runs 1.5x-2.5x faster than using Intel MKL and

LibSVM libraries on Intel Xeon processors and 5x-16x faster than that on Xeon-phi processors.
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The parallel implementation of FCMA for computer clusters achieves near linear speedups.

In SRM [42], the initial formulation of the problem requires the inversion of a square matrix

whose size is the number of voxels by the number of subjects. We use the matrix inversion lemma

and other linear algebra transformations to require only memory proportional to the number of

SRM features, much lower than the number of voxels. We support parallelizing the computation by

subject, using MPI. Finally, we minimize the data sent between MPI processes, which may otherwise

become a bottleneck when running on an HPC cluster. With the FastSRM algorithm [43], we can

apply SRM to large datasets that do not fit in memory. Its efficient implementation (relying on an

intermediate atlas-based representation) yields similar performance to the initial formulation while

being faster and more memory efficient.

In hierarchical TFA [42], the main bottlenecks we dealt with were large memory requirements

for storing a certain Jacobian matrix and a large number of matrix inversions computed by an

unconstrained non-linear least squares solver. To address the memory issue, we partition the model

variables that determine the matrix size into two blocks; this doubles the required computations,

but we consider this tradeoff to be worthwhile. To reduce the number of inversions, we use a

constrained solver and apply the matrix inversion lemma. Parallel processing within subject is

implemented with OpenMP and across subjects with MPI.

6 Contributing to BrainIAK

BrainIAK follows open collaboration principles. While the Princeton Neuroscience Institute and

Intel Labs started the project, contributions are welcome from anyone. Contributions can take

many forms: Python code for one of the analysis methods, C++ code for speeding up computation,

Jupyter notebooks to showcase method usage, documentation, bug descriptions, or community

interaction via email and chat. To encourage new contributors, we advertise simple tasks on our

public issue tracker on GitHub.
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Source code is published on GitHub under an open source license (Apache 2.0, except for the

brainiak extras package, which uses LGPL 3.0 because of its dependencies). The criteria for

accepting new code are documented and automatically verified as much as possible.

Documentation is essential for attracting users and contributors. Therefore, we require each code

contribution to be accompanied by documentation. Furthermore, we provide both simple examples

and comprehensive tutorials for most of the methods. Contributions improving documentation are

welcome.

We have a public email list and a public chat room for community discussions. We try to provide

a welcoming environment for anyone to discuss issues less formally than via GitHub.

We found hackathons to be an effective way to attract new contributors. In addition to

BrainIAK-specific hackathons we organized, we also submitted BrainIAK topics for larger hackathons,

such as the one organized by OHBM.

7 Summary

Our goal in writing this article was to present an overview of BrainIAK as it stands at the time

of publication, highlighting the various analysis methods incorporated in the toolkit, key themes

linking these methods (e.g., making them HPC-friendly), and also key future future directions (e.g.,

real-time). By focusing on the problem addressed by each analysis method and providing example

notebooks, we hope to have given potential users a sense of why they might want to use each

method, and how that method works. However, the descriptions here are brief and do not cover the

techniques in detail. For readers interested in learning more about these techniques, we encourage

them to follow the links in the annotated bibliographies that accompany the notebooks, and also

(when applicable) to the relevant tutorials.
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[22] Kumar M, Ellis CT, Lu Q, Zhang H, Capotă M, Willke TL, et al. BrainIAK tutorials: User-

friendly learning materials for advanced fMRI analysis. PLOS Computational Biology. 2020

41

http://papers.nips.cc/paper/5855-a-reduced-dimension-fmri-shared-response-model.pdf
http://papers.nips.cc/paper/5855-a-reduced-dimension-fmri-shared-response-model.pdf
http://linkinghub.elsevier.com/retrieve/pii/S0896627317305937


Jan;16(1):e1007549. Available from: https://journals.plos.org/ploscompbiol/article?id=10.

1371/journal.pcbi.1007549.

[23] Ellis CT, Baldassano C, Schapiro AC, Cai MB, Cohen JD. Facilitating open-science with

realistic fMRI simulation: validation and application. PeerJ. 2020;8:e8564.

[24] Nastase SA, Goldstein A, Hasson U. Keep it real: rethinking the primacy of experimental

control in cognitive neuroscience. NeuroImage. 2020;222:117254. Available from: http://

www.sciencedirect.com/science/article/pii/S1053811920307400.

[25] Hasson U, Malach R, Heeger DJ. Reliability of cortical activity during natural stimulation.

Trends in Cognitive Sciences. 2010;14(1):40 – 48. Available from: http://www.sciencedirect.

com/science/article/pii/S1364661309002393.

[26] Nili H, Wingfield C, Walther A, Su L, Marslen-Wilson W, Kriegeskorte N. A toolbox for

representational similarity analysis. PLoS Computational Biology. 2014 Apr;10(4):e1003553.

Available from: http://dx.plos.org/10.1371/journal.pcbi.1003553.

[27] Hasson U, Yang E, Vallines I, Heeger DJ, Rubin N. A hierarchy of temporal receptive windows

in human cortex. Journal of Neuroscience. 2008;28(10):2539–2550. Available from: https:

//www.jneurosci.org/content/28/10/2539.

[28] Lerner Y, Honey CJ, Silbert LJ, Hasson U. Topographic mapping of a hierarchy of temporal

receptive windows using a narrated story. Journal of Neuroscience. 2011;31(8):2906–2915.

Available from: https://www.jneurosci.org/content/31/8/2906.

[29] Chen G, Shin YW, Taylor PA, Glen DR, Reynolds RC, Israel RB, et al. Untangling the

relatedness among correlations, part I: nonparametric approaches to inter-subject correlation

analysis at the group level. NeuroImage. 2016;142:248–259.

[30] Chen G, Taylor PA, Shin YW, Reynolds RC, Cox RW. Untangling the relatedness among

correlations, Part II: Inter-subject correlation group analysis through linear mixed-effects

modeling. Neuroimage. 2017;147:825–840.

42

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007549
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007549
http://www.sciencedirect.com/science/article/pii/S1053811920307400
http://www.sciencedirect.com/science/article/pii/S1053811920307400
http://www.sciencedirect.com/science/article/pii/S1364661309002393
http://www.sciencedirect.com/science/article/pii/S1364661309002393
http://dx.plos.org/10.1371/journal.pcbi.1003553
https://www.jneurosci.org/content/28/10/2539
https://www.jneurosci.org/content/28/10/2539
https://www.jneurosci.org/content/31/8/2906


[31] Simony E, Honey CJ, Chen J, Lositsky O, Yeshurun Y, Wiesel A, et al. Dynamic recon-

figuration of the default mode network during narrative comprehension. Nature Communi-

cations. 2016 jul;7(May 2015):12141. Available from: http://www.nature.com/doifinder/10.

1038/ncomms12141.

[32] Chen J, Leong YC, Honey CJ, Yong CH, Norman KA, Hasson U. Shared memories re-

veal shared structure in neural activity across individuals. Nature Neuroscience. 2017

Jan;20(1):115–125. Available from: https://www.nature.com/articles/nn.4450.

[33] Nastase S, Liu Y, Hillman H, Zadbood A, Hasenfratz L, Keshavarzian N, et al. Narratives:

fMRI data for evaluating models of naturalistic language comprehension. OpenNeuro. 2019;p.

ds002345.

[34] Chien HYS, Honey CJ. Constructing and forgetting temporal context in the human cerebral

cortex. Neuron. 2020;p. 675 – 686.e11. Available from: https://doi.org/10.1016/j.neuron.

2020.02.013.

[35] Schaefer A, Kong R, Gordon EM, Laumann TO, Zuo XN, Holmes AJ, et al. Local-global

parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cerebral

cortex. 2018;28(9):3095–3114.

[36] Frost MA, Goebel R. Measuring structural–functional correspondence: spatial variability of

specialised brain regions after macro-anatomical alignment. Neuroimage. 2012;59(2):1369–

1381.

[37] Cox DD, Savoy RL. Functional magnetic resonance imaging (fMRI)“brain reading”: detecting

and classifying distributed patterns of fMRI activity in human visual cortex. NeuroImage.

2003;19(2):261–270.

[38] Haxby JV, Connolly AC, Guntupalli JS. Decoding neural representational spaces using mul-

tivariate pattern analysis. Annual Review of Neuroscience. 2014;37:435–456.

43

http://www.nature.com/doifinder/10.1038/ncomms12141
http://www.nature.com/doifinder/10.1038/ncomms12141
https://www.nature.com/articles/nn.4450
https://doi.org/10.1016/j.neuron.2020.02.013
https://doi.org/10.1016/j.neuron.2020.02.013


[39] Haxby JV, Guntupalli JS, Connolly AC, Halchenko YO, Conroy BR, Gobbini MI, et al. A

common, high-dimensional model of the representational space in human ventral temporal

cortex. Neuron. 2011 Oct;72(2):404–416. Available from: https://www.ncbi.nlm.nih.gov/

pmc/articles/PMC3201764/.

[40] Haxby JV, Guntupalli JS, Nastase SA, Feilong M. Hyperalignment: Modeling shared infor-

mation encoded in idiosyncratic cortical topographies. ELife. 2020;9:e56601.

[41] Bazeille T, Richard H, Janati H, Thirion B. Local optimal transport for functional brain

template estimation. In: International Conference on Information Processing in Medical

Imaging. Springer; 2019. p. 237–248.

[42] Anderson MJ, Capota M, Turek JS, Zhu X, Willke TL, Wang Y, et al. Enabling factor

analysis on thousand-subject neuroimaging datasets. IEEE; 2016. p. 1151–1160. Available

from: http://ieeexplore.ieee.org/document/7840719/.

[43] Richard H, Martin L, Pinho AL, Pillow J, Thirion B. Fast shared response model for fMRI

data. arXiv. 2019;p. 12537. Available from: https://arxiv.org/abs/1909.12537.

[44] Turek JS, Ellis CT, Skalaban LJ, Turk-Browne NB, Willke TL. Capturing shared and in-

dividual information in FMRI data. In: 2018 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP). IEEE; 2018. p. 826–830.

[45] Turek JS, Willke TL, Chen PH, Ramadge PJ. A semi-supervised method for multi-subject

fMRI functional alignment. In: 2017 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP). IEEE; 2017. p. 1098–1102.

[46] Nastase SA, Liu YF, Hillman H, Norman KA, Hasson U. Leveraging shared connectivity

to aggregate heterogeneous datasets into a common response space. NeuroImage. 2020;p.

116865.

[47] Turk-Browne NB. Functional interactions as big data in the human brain. Science (New

44

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3201764/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3201764/
http://ieeexplore.ieee.org/document/7840719/
https://arxiv.org/abs/1909.12537


York, NY). 2013 Nov;342(6158):580–584. Available from: https://www.ncbi.nlm.nih.gov/

pmc/articles/PMC3970973/.

[48] Shirer WR, Ryali S, Rykhlevskaia E, Menon V, Greicius MD. Decoding subject-driven cog-

nitive states with whole-brain connectivity patterns. Cerebral Cortex. 2012;22(1):158–165.

[49] Cohen JD, Daw N, Engelhardt B, Hasson U, Li K, Niv Y, et al. Computational approaches

to fMRI analysis. Nature Neuroscience. 2017 Mar;20(3):304–313. Available from: http:

//www.nature.com/articles/nn.4499.

[50] Wang Y, Cohen JD, Li K, Turk-Browne NB. Full correlation matrix analysis (FCMA): An

unbiased method for task-related functional connectivity. Journal of Neuroscience Methods.

2015;251:108–119.

[51] Forum MP. MPI: A message-passing interface standard. Knoxville, TN, USA: University of

Tennessee; 1994.

[52] Wang Y, Anderson MJ, Cohen JD, Heinecke A, Li K, Satish N, et al. Full correlation matrix

analysis of fMRI data on Intel R© Xeon PhiTM coprocessors. In: SC’15: Proceedings of the In-

ternational Conference for High Performance Computing, Networking, Storage and Analysis.

IEEE; 2015. p. 1–12.

[53] Kriegeskorte N, Mur M, Ruff DA, Kiani R, Bodurka J, Esteky H, et al. Matching cat-

egorical object representations in inferior temporal cortex of man and monkey. Neuron.

2008 Dec;60(6):1126–1141. Available from: http://www.sciencedirect.com/science/article/

pii/S0896627308009434.

[54] Alink A, Walther A, Krugliak A, van den Bosch JJ, Kriegeskorte N. Mind the drift - improving

sensitivity to fMRI pattern information by accounting for temporal pattern drift. bioRxiv.

2015;p. 032391. Available from: https://www.biorxiv.org/content/early/2015/12/04/032391.

[55] Henriksson L, Khaligh-Razavi SM, Kay K, Kriegeskorte N. Visual representations are domi-

nated by intrinsic fluctuations correlated between areas. NeuroImage. 2015;114:275–286.

45

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3970973/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3970973/
http://www.nature.com/articles/nn.4499
http://www.nature.com/articles/nn.4499
http://www.sciencedirect.com/science/article/pii/S0896627308009434
http://www.sciencedirect.com/science/article/pii/S0896627308009434
https://www.biorxiv.org/content/early/2015/12/04/032391


[56] Cai MB, Shvartsman M, Wu A, Zhang H, Zhu X. Incorporating structured assumptions with

probabilistic graphical models in fMRI data analysis. Neuropsychologia. 2020;p. 107500.

[57] Cai MB, Schuck NW, Pillow JW, Niv Y. A Bayesian method for reducing bias in neural

representational similarity analysis. In: Lee DD, Sugiyama M, Luxburg UV, Guyon

I, Garnett R, editors. Advances in Neural Information Processing Systems 29. Curran

Associates, Inc.; 2016. p. 4951—-4959. Available from: http://papers.nips.cc/paper/

6131-a-bayesian-method-for-reducing-bias-in-neural-representational-similarity-analysis.

pdf.

[58] Zacks JM, Speer NK, Swallow KM, Braver TS, Reynolds JR. Event perception: a mind/brain

perspective. Psychological Bulletin. 2007 Mar;133(2):273–293. Available from: https://www.

ncbi.nlm.nih.gov/pmc/articles/PMC2852534/.

[59] Zacks JM, Kurby CA, Eisenberg ML, Haroutunian N. Prediction error associated with

the perceptual segmentation of naturalistic events. Journal of Cognitive Neuroscience. 2011

dec;23(12):4057–4066. Available from: https://www.mitpressjournals.org/doi/abs/10.1162/

jocn a 00078.

[60] Newtson D. Attribution and the unit of perception of ongoing behavior. Journal of Person-

ality and Social Psychology. 1973;28(1):28–38. Place: US Publisher: American Psychological

Association.

[61] Baldassano C, Hasson U, Norman KA. Representation of real-world event schemas during

narrative perception. Journal of Neuroscience. 2018 Nov;38(45):9689–9699. Available from:

http://www.jneurosci.org/content/38/45/9689.

[62] Antony JW, Hartshorne TH, Pomeroy K, Gureckis TM, Hasson U, McDougle SD, et al.

Behavioral, physiological, and neural signatures of surprise during naturalistic sports viewing.

Neuron. 2020;69:1–4. Available from: https://doi.org/10.1016/j.neuron.2020.10.029.

[63] Silva M, Baldassano C, Fuentemilla L. Rapid memory reactivation at movie event boundaries

promotes episodic encoding. Journal of Neuroscience. 2019 10;39(43):8538–8548.

46

http://papers.nips.cc/paper/6131-a-bayesian-method-for-reducing-bias-in-neural-representational-similarity-analysis.pdf
http://papers.nips.cc/paper/6131-a-bayesian-method-for-reducing-bias-in-neural-representational-similarity-analysis.pdf
http://papers.nips.cc/paper/6131-a-bayesian-method-for-reducing-bias-in-neural-representational-similarity-analysis.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2852534/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2852534/
https://www.mitpressjournals.org/doi/abs/10.1162/jocn_a_00078
https://www.mitpressjournals.org/doi/abs/10.1162/jocn_a_00078
http://www.jneurosci.org/content/38/45/9689
https://doi.org/10.1016/j.neuron.2020.10.029


[64] Manning JR, Ranganath R, Norman KA, Blei DM. Topographic factor analysis: a Bayesian

model for inferring brain networks from neural data. PLoS One. 2014;9(5):e94914.

[65] Manning JR, Zhu X, Willke TL, Ranganath R, Stachenfeld K, Hasson U, et al. A probabilistic

approach to discovering dynamic full-brain functional connectivity patterns. NeuroImage.

2018;180:243–252.

[66] Tian Y, Margulies DS, Breakspear M, Zalesky A. Topographic organization of the hu-

man subcortex unveiled with functional connectivity gradients. Nature Neuroscience.

2020;doi.org/10.1038/s41593-020-00711-6.

[67] Brouwer GJ, Heeger DJ. Decoding and reconstructing color from responses in human visual

cortex. Journal of Neuroscience. 2009 Nov;29(44):13992–14003.

[68] Ester EF, Sprague TC, Serences JT. Parietal and frontal cortex encode stimulus-specific

mnemonic representations during visual working memory. Neuron. 2015 Aug;87(4):893–905.

[69] Scolari M, Byers A, Serences JT. Optimal deployment of attentional gain during fine discrim-

inations. Journal of Neuroscience. 2012 May;32(22):7723–7733.

[70] Rademaker RL, Chunharas C, Serences JT. Coexisting representations of sensory

and mnemonic information in human visual cortex. Nature Neuroscience. 2019

Aug;22(8):1336–1344.

[71] Lorenc ES, Sreenivasan KK, Nee DE, Vandenbroucke ARE, D’Esposito M. Flexible coding

of visual working memory representations during distraction. Journal of Neuroscience. 2018

Jun;38(23):5267–5276.

[72] Kok P, Turk-Browne NB. Associative prediction of visual shape in the hippocampus. Journal

of Neuroscience. 2018 Aug;38(31):6888–6899.
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List of Figures

1 Schematic of ISC and ISFC analysis. A. The measured response time series (maroon)

can be decomposed into three components: a consistent stimulus-induced component

that is shared across subjects (red), an idiosyncratic stimulus-induced component

(gold), and an idiosyncratic noise component (gray). B. ISC is computed between

two homologous brain areas (maroon and orange) across subjects, thus isolating the

shared, stimulus-induced signal from idiosyncratic signals. C. Typical functional

connectivity analysis is computed within subjects across brain areas. D. ISFC is

computed across both subjects and brain areas. ISFC analysis provides functional

network estimation analogous to within-subject functional connectivity analysis, but

isolates the shared, stimulus-induced signal and is robust to idiosyncratic noise. E.

The diagonal of the ISFC matrix comprises the ISC values. . . . . . . . . . . . . . . 9
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2 Schematic of the shared response model (SRM). (a) Data are typically split into a

training set (light gray) used to estimate the SRM and a test set (dark gray) used

for evaluation. The SRM is estimated from response time series from the training

set for multiple subjects (top left; transposed here for visualization). The multi-

subject response time series are decomposed into a set of subject-specific orthogonal

topographic transformation matrices and a reduced-dimension shared response space.

The learned subject-specific topographic bases can be used to project test data (bot-

tom left) into the shared space. This projection functionally aligns the test data. . . 12

3 Full Correlation Matrix Analysis (FCMA). A. FCMA leverages several com-

puting optimizations to permit calculation of full functional connectivity between all

voxels in the brain; B. By default, FCMA then performs SVM classification on each

voxel’s pattern of connectivity with the rest of the brain in order to assess how well

each pattern differentiates two conditions or groups; C. The best performing voxels

from B can then be used to guide additional analyses including visualizing/mapping

top voxels, analysis of nodes and edges using graph theory-based metrics, and clas-

sification of patterns of connectivity from held-out data. . . . . . . . . . . . . . . . . 14
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4 Overview of (G)BRSA. A. (G)BRSA assumes a hierarchical generative model for

fMRI data, where a hypothetical covariance structure governs the distribution of re-

sponse amplitudes of each voxel to different task conditions (here we take four images

as an example), and the response amplitudes in turn contribute task-evoked responses

to the fMRI data according to the design matrix. Other parameters determine the

spatial and temporal properties of noise (and spontaneous activity). Arrows indicate

causal relations in a probabilistic graphical model. B. (G)BRSA marginalizes out

intermediate variables that contribute to fMRI data, making it possible to compute

the log likelihood of the fMRI data Y given the covariance structure U (the arrow

with dashed contour); the algorithm then finds U that maximizes this log likelihood

(the solid arrow), which can be converted to a similarity matrix of activation pat-

terns. C. BRSA significantly reduces bias (spurious similarity structure) compared

to traditional RSA on a simulated dataset with 16 task conditions. The four figures

are (from top to bottom) the ground truth similarity structure in the simulated data,

similarity structure recovered by BRSA and traditional RSA, respectively, and the

theoretically derived spurious structure arising from the interaction between fMRI

noise and the design matrix. (Figure C reproduced from [15]) . . . . . . . . . . . . . 17

5 Use cases for the event segmentation model. . . . . . . . . . . . . . . . . . . . 21
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6 Topographic Factor Analysis. A. Spherical nodes describe contiguous sets

of similarly behaving voxels. Each node is represented as a radial basis function.

A node’s image may be constructed by evaluating its radial basis function at the

locations of each voxel. Level curves for several example nodes fit to a synthetic

3D image are outlined in white; ×s denote the node centers projected onto the 2D

slice displayed in the panel. B. Brain images are described by weighted sums

of the nodes’ images. After computing each node’s image (using its radial basis

function), arbitrary brain images may be approximated using weighted combinations

of the images for each node. The per-image weights may be used as a low-dimensional

embedding of the original data. A 2D slice of the reconstruction for the image

displayed in panel A demonstrates how contiguous clusters of voxels are approximated

using weighted activations of spherical nodes. C. The global template serves as a

prior for subject-specific parameters. The global template defines the numbers

of nodes, their locations, and their sizes, for the prototypical participant. Each

individual participant’s parameters (node locations and sizes) are fit using the global

template as a prior. This provides a linking function between different participants’

nodes, thereby enabling across-subject comparisons. A subset of the nodes outlined in

Panel A are displayed in the global template cartoon. The positions of these nodes in

each individual participant’s subject-specific template are displayed in different colors.

D. A “ball and stick” representation of network connections. The level

curve of each node defines a spherical ball (gray). The per-image node weights may

be used to infer static or dynamic functional connectivity patterns (i.e., correlations)

between nodes: red “sticks” represent positive connections, blue sticks represent

negative connections, and stick thickness is proportional to connection strength.) . 23
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7 Inverted encoding model. A. Inverting the forward encoding model to reconstruct

the stimulus feature, orientation. First, the experimenter specifies some nonlinear

transformation of the stimulus into a representational space. Here, orientations of

Gabor gratings are transformed into activations on a set of orientation channels C

that tile the stimulus space. Then, the fMRI responses B are predicted by solving

the linear equation B = WC. To reconstruct stimulus features with a new set of data

B2, we simply invert W to predict a new C2. B. IEMs allow experimenters to test

detailed hypotheses about stimulus representations. [69] tested the off-channel gain

hypothesis (figure adapted with permission). According to this hypothesis, when

discriminating between very similar features, it is optimal to enhance the responses

of channels close to the relevant feature, rather than directly enhancing the relevant

feature. Using an IEM for stimulus orientation, [69] demonstrated off-channel gain

enhancement when subjects performed a difficult orientation discrimination task,

compared to when subjects performed a contrast discrimination task on the same

stimuli. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

8 Example of the spatial and temporal structure of real and simulated data. The real

data (top row) was input into fmrisim and produced simulated data (bottom row).

A. depicts the spatial structure of real data (top) and fitted simulated data (bottom).

B. shows the time course of sample voxels and C shows the power spectra of a sample

of high-pass filtered voxels. Reproduced from [23]. . . . . . . . . . . . . . . . . . . . 29
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