6 research outputs found

    A Bayesian Jamming Game in an OFDM Wireless Network

    Get PDF
    Games and LearningInternational audienceThe goal of this paper is to investigate how incomplete information on the fading channel gains impacts transmission parameters. We consider in an OFDM network with transmitters and jammers. To deal with this situation we employ a Bayesian approach by introducing different type of user and jammer corresponding to their knowledge of the network environment. To get an insight of the problem, the signal to interference and noise ratio (SINR) is considered as the main metric to optimize. First, equilibrium are found in closed form expressions. Second, we show interesting results saying that incomplete information on the jammer channel gains leads to equilibrium strategies which correspond to utilization of the same channels by the different types of the jammer. Meanwhile incomplete information about the transmitter leads to channels sharing transmission equilibrium strategies employed by different types of users

    A Mixed-Integer Programming Approach for Jammer Placement Problems for Flow-Jamming Attacks on Wireless Communication Networks

    Get PDF
    In this dissertation, we study an important problem of security in wireless networks. We study different attacks and defense strategies in general and more specifically jamming attacks. We begin the dissertation by providing a tutorial introducing the operations research community to the various types of attacks and defense strategies in wireless networks. In this tutorial, we give examples of mathematical programming models to model jamming attacks and defense against jamming attacks in wireless networks. Later we provide a comprehensive taxonomic classification of the various types of jamming attacks and defense against jamming attacks. The classification scheme will provide a one stop location for future researchers on various jamming attack and defense strategies studied in literature. This classification scheme also highlights the areas of research in jamming attack and defense against jamming attacks which have received less attention and could be a good area of focus for future research. In the next chapter, we provide a bi-level mathematical programming model to study jamming attack and defense strategy. We solve this using a game-theoretic approach and also study the impact of power level, location of jamming device, and the number of transmission channels available to transmit data on the attack and defense against jamming attacks. We show that by increasing the number of jamming devices the throughput of the network drops by at least 7%. Finally we study a special type of jamming attack, flow-jamming attack. We provide a mathematical programming model to solve the location of jamming devices to increase the impact of flow-jamming attacks on wireless networks. We provide a Benders decomposition algorithm along with some acceleration techniques to solve large problem instances in reasonable amount of time. We draw some insights about the impact of power, location and size of the network on the impact of flow-jamming attacks in wireless networks

    A Mixed-Integer Programming Approach for Jammer Placement Problems for Flow-Jamming Attacks on Wireless Communication Networks

    Get PDF
    In this dissertation, we study an important problem of security in wireless networks. We study different attacks and defense strategies in general and more specifically jamming attacks. We begin the dissertation by providing a tutorial introducing the operations research community to the various types of attacks and defense strategies in wireless networks. In this tutorial, we give examples of mathematical programming models to model jamming attacks and defense against jamming attacks in wireless networks. Later we provide a comprehensive taxonomic classification of the various types of jamming attacks and defense against jamming attacks. The classification scheme will provide a one stop location for future researchers on various jamming attack and defense strategies studied in literature. This classification scheme also highlights the areas of research in jamming attack and defense against jamming attacks which have received less attention and could be a good area of focus for future research. In the next chapter, we provide a bi-level mathematical programming model to study jamming attack and defense strategy. We solve this using a game-theoretic approach and also study the impact of power level, location of jamming device, and the number of transmission channels available to transmit data on the attack and defense against jamming attacks. We show that by increasing the number of jamming devices the throughput of the network drops by at least 7%. Finally we study a special type of jamming attack, flow-jamming attack. We provide a mathematical programming model to solve the location of jamming devices to increase the impact of flow-jamming attacks on wireless networks. We provide a Benders decomposition algorithm along with some acceleration techniques to solve large problem instances in reasonable amount of time. We draw some insights about the impact of power, location and size of the network on the impact of flow-jamming attacks in wireless networks

    Network Science for IoT

    Get PDF
    The research work presented in this thesis is based on the concept and defintion of network that can spread in several and different real world contexts. Indeed, we can refer to a network in a telecommunications sense considering a collection of transmitters, receivers, and communication channels that send or are used to send information to one another. However, as a matter of fact, in nature there are other several examples of networks: the human brain is one of them. The relationship between the actors in Hollywood can be studied in terms of network as well, a generic social community can be compared to a network, eco-systems are networks of species. The recent Network Science aims at studying all these systems using a set of common mathematical methods. In the following of the thesis, we will focus on some of well known telecommunications networks issues using standard telecommunications procedures to address them, with relevant reference to video flow transmissions and management of electric vehicles networks. At the same time, different models aiming at reach the same goals in contexts that may differ from a telecommunications setup can be used. In more details, we will evaluate queueing systems, jamming problems, groups recognition in networks, and mobile computing using game theoretic approaches. It is worth noting that this aspect can be also seen in a reverse order. Indeed, we will discuss how standard telecommunications analysis can be used to investigate on problems not directly related to a telecommunications background. In particular, one of our future purposes is to investigate on the brain connectivity that is raising significant interest in the recent scientific society

    Channel Access in Wireless Networks: Protocol Design of Energy-Aware Schemes for the IoT and Analysis of Existing Technologies

    Get PDF
    The design of channel access policies has been an object of study since the deployment of the first wireless networks, as the Medium Access Control (MAC) layer is responsible for coordinating transmissions to a shared channel and plays a key role in the network performance. While the original target was the system throughput, over the years the focus switched to communication latency, Quality of Service (QoS) guarantees, energy consumption, spectrum efficiency, and any combination of such goals. The basic mechanisms to use a shared channel, such as ALOHA, TDMA- and FDMA-based policies, have been introduced decades ago. Nonetheless, the continuous evolution of wireless networks and the emergence of new communication paradigms demand the development of new strategies to adapt and optimize the standard approaches so as to satisfy the requirements of applications and devices. This thesis proposes several channel access schemes for novel wireless technologies, in particular Internet of Things (IoT) networks, the Long-Term Evolution (LTE) cellular standard, and mmWave communication with the IEEE802.11ad standard. The first part of the thesis concerns energy-aware channel access policies for IoT networks, which typically include several battery-powered sensors. In scenarios with energy restrictions, traditional protocols that do not consider the energy consumption may lead to the premature death of the network and unreliable performance expectations. The proposed schemes show the importance of accurately characterizing all the sources of energy consumption (and inflow, in the case of energy harvesting), which need to be included in the protocol design. In particular, the schemes presented in this thesis exploit data processing and compression techniques to trade off QoS for lifetime. We investigate contention-free and contention-based chanel access policies for different scenarios and application requirements. While the energy-aware schemes proposed for IoT networks are based on a clean-slate approach that is agnostic of the communication technology used, the second part of the thesis is focused on the LTE and IEEE802.11ad standards. As regards LTE, the study proposed in this thesis shows how to use machine-learning techniques to infer the collision multiplicity in the channel access phase, information that can be used to understand when the network is congested and improve the contention resolution mechanism. This is especially useful for massive access scenarios; in the last years, in fact, the research community has been investigating on the use of LTE for Machine-Type Communication (MTC). As regards the standard IEEE802.11ad, instead, it provides a hybrid MAC layer with contention-based and contention-free scheduled allocations, and a dynamic channel time allocation mechanism built on top of such schedule. Although this hybrid scheme is expected to meet heterogeneous requirements, it is still not clear how to develop a schedule based on the various traffic flows and their demands. A mathematical model is necessary to understand the performance and limits of the possible types of allocations and guide the scheduling process. In this thesis, we propose a model for the contention-based access periods which is aware of the interleaving of the available channel time with contention-free allocations
    corecore