46 research outputs found

    Game theory for cooperation in multi-access edge computing

    Get PDF
    Cooperative strategies amongst network players can improve network performance and spectrum utilization in future networking environments. Game Theory is very suitable for these emerging scenarios, since it models high-complex interactions among distributed decision makers. It also finds the more convenient management policies for the diverse players (e.g., content providers, cloud providers, edge providers, brokers, network providers, or users). These management policies optimize the performance of the overall network infrastructure with a fair utilization of their resources. This chapter discusses relevant theoretical models that enable cooperation amongst the players in distinct ways through, namely, pricing or reputation. In addition, the authors highlight open problems, such as the lack of proper models for dynamic and incomplete information scenarios. These upcoming scenarios are associated to computing and storage at the network edge, as well as, the deployment of large-scale IoT systems. The chapter finalizes by discussing a business model for future networks.info:eu-repo/semantics/acceptedVersio

    Review on Radio Resource Allocation Optimization in LTE/LTE-Advanced using Game Theory

    Get PDF
    Recently, there has been a growing trend toward ap-plying game theory (GT) to various engineering fields in order to solve optimization problems with different competing entities/con-tributors/players. Researches in the fourth generation (4G) wireless network field also exploited this advanced theory to overcome long term evolution (LTE) challenges such as resource allocation, which is one of the most important research topics. In fact, an efficient de-sign of resource allocation schemes is the key to higher performance. However, the standard does not specify the optimization approach to execute the radio resource management and therefore it was left open for studies. This paper presents a survey of the existing game theory based solution for 4G-LTE radio resource allocation problem and its optimization

    Game theory for collaboration in future networks

    Get PDF
    Cooperative strategies have the great potential of improving network performance and spectrum utilization in future networking environments. This new paradigm in terms of network management, however, requires a novel design and analysis framework targeting a highly flexible networking solution with a distributed architecture. Game Theory is very suitable for this task, since it is a comprehensive mathematical tool for modeling the highly complex interactions among distributed and intelligent decision makers. In this way, the more convenient management policies for the diverse players (e.g. content providers, cloud providers, home providers, brokers, network providers or users) should be found to optimize the performance of the overall network infrastructure. The authors discuss in this chapter several Game Theory models/concepts that are highly relevant for enabling collaboration among the diverse players, using different ways to incentivize it, namely through pricing or reputation. In addition, the authors highlight several related open problems, such as the lack of proper models for dynamic and incomplete information games in this area.info:eu-repo/semantics/acceptedVersio

    Resource Allocation and Service Management in Next Generation 5G Wireless Networks

    Get PDF
    The accelerated evolution towards next generation networks is expected to dramatically increase mobile data traffic, posing challenging requirements for future radio cellular communications. User connections are multiplying, whilst data hungry content is dominating wireless services putting significant pressure on network's available spectrum. Ensuring energy-efficient and low latency transmissions, while maintaining advanced Quality of Service (QoS) and high standards of user experience are of profound importance in order to address diversifying user prerequisites and ensure superior and sustainable network performance. At the same time, the rise of 5G networks and the Internet of Things (IoT) evolution is transforming wireless infrastructure towards enhanced heterogeneity, multi-tier architectures and standards, as well as new disruptive telecommunication technologies. The above developments require a rethinking of how wireless networks are designed and operate, in conjunction with the need to understand more holistically how users interact with the network and with each other. In this dissertation, we tackle the problem of efficient resource allocation and service management in various network topologies under a user-centric approach. In the direction of ad-hoc and self-organizing networks where the decision making process lies at the user level, we develop a novel and generic enough framework capable of solving a wide array of problems with regards to resource distribution in an adaptable and multi-disciplinary manner. Aiming at maximizing user satisfaction and also achieve high performance - low power resource utilization, the theory of network utility maximization is adopted, with the examined problems being formulated as non-cooperative games. The considered games are solved via the principles of Game Theory and Optimization, while iterative and low complexity algorithms establish their convergence to steady operational outcomes, i.e., Nash Equilibrium points. This thesis consists a meaningful contribution to the current state of the art research in the field of wireless network optimization, by allowing users to control multiple degrees of freedom with regards to their transmission, considering mobile customers and their strategies as the key elements for the amelioration of network's performance, while also adopting novel technologies in the resource management problems. First, multi-variable resource allocation problems are studied for multi-tier architectures with the use of femtocells, addressing the topic of efficient power and/or rate control, while also the topic is examined in Visible Light Communication (VLC) networks under various access technologies. Next, the problem of customized resource pricing is considered as a separate and bounded resource to be optimized under distinct scenarios, which expresses users' willingness to pay instead of being commonly implemented by a central administrator in the form of penalties. The investigation is further expanded by examining the case of service provider selection in competitive telecommunication markets which aim to increase their market share by applying different pricing policies, while the users model the selection process by behaving as learning automata under a Machine Learning framework. Additionally, the problem of resource allocation is examined for heterogeneous services where users are enabled to dynamically pick the modules needed for their transmission based on their preferences, via the concept of Service Bundling. Moreover, in this thesis we examine the correlation of users' energy requirements with their transmission needs, by allowing the adaptive energy harvesting to reflect the consumed power in the subsequent information transmission in Wireless Powered Communication Networks (WPCNs). Furthermore, in this thesis a fresh perspective with respect to resource allocation is provided assuming real life conditions, by modeling user behavior under Prospect Theory. Subjectivity in decisions of users is introduced in situations of high uncertainty in a more pragmatic manner compared to the literature, where they behave as blind utility maximizers. In addition, network spectrum is considered as a fragile resource which might collapse if over-exploited under the principles of the Tragedy of the Commons, allowing hence users to sense risk and redefine their strategies accordingly. The above framework is applied in different cases where users have to select between a safe and a common pool of resources (CPR) i.e., licensed and unlicensed bands, different access technologies, etc., while also the impact of pricing in protecting resource fragility is studied. Additionally, the above resource allocation problems are expanded in Public Safety Networks (PSNs) assisted by Unmanned Aerial Vehicles (UAVs), while also aspects related to network security against malign user behaviors are examined. Finally, all the above problems are thoroughly evaluated and tested via a series of arithmetic simulations with regards to the main characteristics of their operation, as well as against other approaches from the literature. In each case, important performance gains are identified with respect to the overall energy savings and increased spectrum utilization, while also the advantages of the proposed framework are mirrored in the improvement of the satisfaction and the superior Quality of Service of each user within the network. Lastly, the flexibility and scalability of this work allow for interesting applications in other domains related to resource allocation in wireless networks and beyond

    Applications of Game Theory and Microeconomics in Cognitive Radio and Femtocell Networks

    Get PDF
    Cognitive radio networks have recently been proposed as a promising approach to overcome the serious problem of spectrum scarcity. Other emerging concept for innovative spectrum utilization is femtocells. Femtocells are low-power and short-range wireless access points installed by the end-user in residential or enterprise environments. A common feature of cognitive radio and femtocells is their two-tier nature involving primary and secondary users (PUs, SUs). While this new paradigm enables innovative alternatives to conventional spectrum management and utilization, it also brings its own technical challenges. A main challenge in cognitive radio is the design of efficient resource (spectrum) trading methods. Game and microeconomics theories provide tools for studying the strategic interactions through rationality and economic benefits between PUs and SUs for effective resource allocation. In this thesis, we investigate some efficient game theoretic and microeconomic approaches to address spectrum trading in cognitive networks. We propose two auction frameworks for shared and exclusive use models. In the first auction mechanism, we consider the shared used model in cognitive radio networks and design a spectrum trading method to maximize the total satisfaction of the SUs and revenue of the Wireless Service Provider (WSP). In the second auction mechanism, we investigate spectrum trading via auction approach for exclusive usage spectrum access model in cognitive radio networks. We consider a realistic valuation function and propose an efficient concurrent Vickrey-Clarke-Grove (VCG) mechanism for non-identical channel allocation among r-minded bidders in two different cases. The realization of cognitive radio networks in practice requires the development of effective spectrum sensing methods. A fundamental question is how much time to allocate for sensing purposes. In the literature on cognitive radio, it is commonly assumed that fixed time durations are assigned for spectrum sensing and data transmission. It is however possible to improve the network performance by finding the best tradeoff between sensing time and throughput. In this thesis, we derive an expression for the total average throughput of the SUs over time-varying fading channels. Then we maximize the total average throughput in terms of sensing time and the number of SUs assigned to cooperatively sense each channel. For practical implementation, we propose a dynamical programming algorithm for joint optimization of sensing time and the number of cooperating SUs for sensing purpose. Simulation results demonstrate that significant improvement in the throughput of SUs is achieved in the case of joint optimization. In the last part of the thesis, we further address the challenge of pricing in oligopoly market for open access femtocell networks. We propose dynamic pricing schemes based on microeconomic and game theoretic approaches such as market equilibrium, Bertrand game, multiple-leader-multiple-follower Stackelberg game. Based on our approaches, the per unit price of spectrum can be determined dynamically and mobile service providers can gain more revenue than fixed pricing scheme. Our proposed methods also provide residential customers more incentives and satisfaction to participate in open access model.1 yea

    Game Theory for Multi-Access Edge Computing:Survey, Use Cases, and Future Trends

    Get PDF
    Game theory (GT) has been used with significant success to formulate, and either design or optimize, the operation of many representative communications and networking scenarios. The games in these scenarios involve, as usual, diverse players with conflicting goals. This paper primarily surveys the literature that has applied theoretical games to wireless networks, emphasizing use cases of upcoming multiaccess edge computing (MEC). MEC is relatively new and offers cloud services at the network periphery, aiming to reduce service latency backhaul load, and enhance relevant operational aspects such as quality of experience or security. Our presentation of GT is focused on the major challenges imposed by MEC services over the wireless resources. The survey is divided into classical and evolutionary games. Then, our discussion proceeds to more specific aspects which have a considerable impact on the game's usefulness, namely, rational versus evolving strategies, cooperation among players, available game information, the way the game is played (single turn, repeated), the game's model evaluation, and how the model results can be applied for both optimizing resource-constrained resources and balancing diverse tradeoffs in real edge networking scenarios. Finally, we reflect on lessons learned, highlighting future trends and research directions for applying theoretical model games in upcoming MEC services, considering both network design issues and usage scenarios

    Distributed radio resource allocation in wireless heterogeneous networks

    Get PDF
    This dissertation studies the problem of resource allocation in the radio access network of heterogeneous small-cell networks (HetSNets). A HetSNet is constructed by introducing smallcells(SCs) to a geographical area that is served by a well-structured macrocell network. These SCs reuse the frequency bands of the macro-network and operate in the interference-limited region. Thus, complex radio resource allocation schemes are required to manage interference and improve spectral efficiency. Both centralized and distributed approaches have been suggested by researchers to solve this problem. This dissertation follows the distributed approach under the self-organizing networks (SONs) paradigm. In particular, it develops game-theoretic and learning-theoretic modeling, analysis, and algorithms. Even though SONs may perform subpar to a centralized optimal controller, they are highly scalable and fault-tolerant. There are many facets to the problem of wireless resource allocation. They vary by the application, solution, methodology, and resource type. Therefore, this thesis restricts the treatment to four subproblems that were chosen due to their significant impact on network performance and suitability to our interests and expertise. Game theory and mechanism design are the main tools used since they provide a sufficiently rich environment to model the SON problem. Firstly, this thesis takes into consideration the problem of uplink orthogonal channel access in a dense cluster of SCs that is deployed in a macrocell service area. Two variations of this problem are modeled as noncooperative Bayesian games and the existence of pure-Bayesian Nash symmetric equilibria are demonstrated. Secondly, this thesis presents the generalized satisfaction equilibrium (GSE) for games in satisfaction-form. Each wireless agent has a constraint to satisfy and the GSE is a mixed-strategy profile from which no unsatisfied agent can unilaterally deviate to satisfaction. The objective of the GSE is to propose an alternative equilibrium that is designed specifically to model wireless users. The existence of the GSE, its computational complexity, and its performance compared to the Nash equilibrium are discussed. Thirdly, this thesis introduces verification mechanisms for dynamic self-organization of Wireless access networks. The main focus of verification mechanisms is to replace monetary transfers that are prevalent in current research. In the wireless environment particular private information of the wireless agents, such as block error rate and application class, can be verified at the access points. This verification capability can be used to threaten false reports with backhaul throttling. The agents then learn the truthful equilibrium over time by observing the rewards and punishments. Finally, the problem of admission control in the interfering-multiple access channel with rate constraints is addressed. In the incomplete information setting, with compact convex channel power gains, the resulting Bayesian game possesses at least one pureBayesian Nash equilibrium in on-off threshold strategies. The above-summarized results of this thesis demonstrate that the HetSNets are amenable to self-organization, albeit with adapted incentives and equilibria to fit the wireless environment. Further research problems to expand these results are identified at the end of this document

    Distributed optimisation techniques for wireless networks

    Get PDF
    Alongside the ever increasing traffic demand, the fifth generation (5G) cellular network architecture is being proposed to provide better quality of service, increased data rate, decreased latency, and increased capacity. Without any doubt, the 5G cellular network will comprise of ultra-dense networks and multiple input multiple output technologies. This will make the current centralised solutions impractical due to increased complexity. Moreover, the amount of coordination information that needs to be transported over the backhaul links will be increased. Distributed or decentralised solutions are promising to provide better alternatives. This thesis proposes new distributed algorithms for wireless networks which aim to reduce the amount of system overheads in the backhaul links and the system complexity. The analysis of conflicts amongst transmitters, and resource allocation are conducted via the use of game theory, convex optimisation, and auction theory. Firstly, game-theoretic model is used to analyse a mixed quality of service (QoS) strategic non-cooperative game (SNG), for a two-user multiple-input single-output (MISO) interference channel. The players are considered to have different objectives. Following this, the mixed QoS SNG is extended to a multicell multiuser network in terms of signal-to-interference-and-noise ratio (SINR) requirement. In the multicell multiuser setting, each transmitter is assumed to be serving real time users (RTUs) and non-real time users (NRTUs), simultaneously. A novel mixed QoS SNG algorithm is proposed, with its operating point identified as the Nash equilibrium-mixed QoS (NE-mixed QoS). Nash, Kalai-Smorodinsky, and Egalitarian bargain solutions are then proposed to improve the performance of the NE-mixed QoS. The performance of the bargain solutions are observed to be comparable to the centralised solutions. Secondly, user offloading and user association problems are addressed for small cells using auction theory. The main base station wishes to offload some of its users to privately owned small cell access points. A novel bid-wait-auction (BWA) algorithm, which allows single-item bidding at each auction round, is designed to decompose the combinatorial mathematical nature of the problem. An analysis on the existence and uniqueness of the dominant strategy equilibrium is conducted. The BWA is then used to form the forward BWA (FBWA) and the backward BWA (BBWA). It is observed that the BBWA allows more users to be admitted as compared to the FBWA. Finally, simultaneous multiple-round ascending auction (SMRA), altered SMRA (ASMRA), sequential combinatorial auction with item bidding (SCAIB), and repetitive combinatorial auction with item bidding (RCAIB) algorithms are proposed to perform user offloading and user association for small cells. These algorithms are able to allow bundle bidding. It is then proven that, truthful bidding is individually rational and leads to Walrasian equilibrium. The performance of the proposed auction based algorithms is evaluated. It is observed that the proposed algorithms match the performance of the centralised solutions when the guest users have low target rates. The SCAIB algorithm is shown to be the most preferred as it provides high admission rate and competitive revenue to the bidders
    corecore