765 research outputs found

    Bayesian Learning Strategies in Wireless Networks

    Get PDF
    This thesis collects the research works I performed as a Ph.D. candidate, where the common thread running through all the works is Bayesian reasoning with applications in wireless networks. The pivotal role in Bayesian reasoning is inference: reasoning about what we don’t know, given what we know. When we make inference about the nature of the world, then we learn new features about the environment within which the agent gains experience, as this is what allows us to benefit from the gathered information, thus adapting to new conditions. As we leverage the gathered information, our belief about the environment should change to reflect our improved knowledge. This thesis focuses on the probabilistic aspects of information processing with applications to the following topics: Machine learning based network analysis using millimeter-wave narrow-band energy traces; Bayesian forecasting and anomaly detection in vehicular monitoring networks; Online power management strategies for energy harvesting mobile networks; Beam training and data transmission optimization in millimeter-wave vehicular networks. In these research works, we deal with pattern recognition aspects in real-world data via supervised/unsupervised learning methods (classification, forecasting and anomaly detection, multi-step ahead prediction via kernel methods). Finally, the mathematical framework of Markov Decision Processes (MDPs), which also serves as the basis for reinforcement learning, is introduced, where Partially Observable MDPs use the notion of belief to make decisions about the state of the world in millimeter-wave vehicular networks. The goal of this thesis is to investigate the considerable potential of inference from insightful perspectives, detailing the mathematical framework and how Bayesian reasoning conveniently adapts to various research domains in wireless networks

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    An integrated method for short-term prediction of road traffic conditions for intelligent transportation systems applications

    Get PDF
    The paper deals with the short-term prediction of road traffic conditions within Intelligent Transportation Systems applications. First, the problem of traffic modeling and the potential of different traffic monitoring technologies are discussed. Then, an integrated method for short-term traffic prediction is presented, which integrates an Artificial Neural Network predictor that forecasts future states in standard conditions, an anomaly detection module that exploits floating car data to individuate possible occurrences of anomalous traffic conditions, and a macroscopic traffic model that predicts speeds and queue progressions in case of anomalies. Results of offline applications on a primary Italian motorway are presented

    A cell outage management framework for dense heterogeneous networks

    Get PDF
    In this paper, we present a novel cell outage management (COM) framework for heterogeneous networks with split control and data planes-a candidate architecture for meeting future capacity, quality-of-service, and energy efficiency demands. In such an architecture, the control and data functionalities are not necessarily handled by the same node. The control base stations (BSs) manage the transmission of control information and user equipment (UE) mobility, whereas the data BSs handle UE data. An implication of this split architecture is that an outage to a BS in one plane has to be compensated by other BSs in the same plane. Our COM framework addresses this challenge by incorporating two distinct cell outage detection (COD) algorithms to cope with the idiosyncrasies of both data and control planes. The COD algorithm for control cells leverages the relatively larger number of UEs in the control cell to gather large-scale minimization-of-drive-test report data and detects an outage by applying machine learning and anomaly detection techniques. To improve outage detection accuracy, we also investigate and compare the performance of two anomaly-detecting algorithms, i.e., k-nearest-neighbor- and local-outlier-factor-based anomaly detectors, within the control COD. On the other hand, for data cell COD, we propose a heuristic Grey-prediction-based approach, which can work with the small number of UE in the data cell, by exploiting the fact that the control BS manages UE-data BS connectivity and by receiving a periodic update of the received signal reference power statistic between the UEs and data BSs in its coverage. The detection accuracy of the heuristic data COD algorithm is further improved by exploiting the Fourier series of the residual error that is inherent to a Grey prediction model. Our COM framework integrates these two COD algorithms with a cell outage compensation (COC) algorithm that can be applied to both planes. Our COC solution utilizes an actor-critic-based reinforcement learning algorithm, which optimizes the capacity and coverage of the identified outage zone in a plane, by adjusting the antenna gain and transmission power of the surrounding BSs in that plane. The simulation results show that the proposed framework can detect both data and control cell outage and compensate for the detected outage in a reliable manner

    Anomaly detection on data streams from vehicular networks

    Get PDF
    As redes veiculares são compostas por nós com elevada mobilidade que apenas estão ativos quando o veículo se encontra em movimento, tornando a rede imprevisível e em constante mudança. Num cenário tão dinâmico, detetar anomalias na rede torna-se uma tarefa exigente, mas crucial. A Veniam opera uma rede veicular que garante conexão fiável através de redes heterogéneas como LTE, Wi-Fi e DSRC, conectando os veículos à Internet e a outros dispositivos espalhados pela cidade. Ao longo do tempo, os nós enviam dados para a Cloud tanto por tecnologias em tempo real como por tecnologias tolerantes a atraso, aumentando a dinâmica da rede. O objetivo desta dissertação é propor e implementar um método para detetar anomalias numa rede veicular real, através de uma análise online dos fluxos de dados enviados dos veículos para a Cloud. Os fluxos da rede foram explorados de forma a caracterizar os dados disponíveis e selecionar casos de uso. Os datasets escolhidos foram submetidos a diferentes técnicas de deteção de anomalias, como previsão de séries temporais e deteção de outliers baseados na densidade da vizinhança, seguido da análise dos trade-offs para selecionar os algoritmos que melhor se ajustam às características dos dados. A solução proposta engloba duas etapas: uma primeira fase de triagem seguida de uma classificação baseada no método dos vizinhos mais próximos. O sistema desenvolvido foi implementado no cluster distribuído da Veniam, que executa Apache Spark, permitindo uma solução rápida e escalável que classifica os dados assim que chegam à Cloud. A performance do método foi avaliada pela sua precisão, i.e., a percentagem de verdadeiras anomalias dentro das anomalias detetadas, quando foi submetido a datasets com anomalias artificiais provenientes de fontes de dados diferentes, recebidas tanto por tecnologias em tempo real como por tecnologias tolerantes a atraso.Vehicular networks are characterized by high mobility nodes that are only active when the vehicle is moving, thus making the network unpredictable and in constant change. In such a dynamic scenario, detecting anomalies in the network is a challenging but crucial task. Veniam operates a vehicular network that ensures reliable connectivity through heterogeneous networks such as LTE, Wi-Fi and DSRC, connecting the vehicles to the Internet and to other devices spread throughout the city. Over time, nodes send data to the cloud either by real time technologies or by delay tolerant ones, increasing the network's dynamics. The aim of this dissertation is to propose and implement a method for detecting anomalies in a real-world vehicular network through means of an online analysis of the data streams that come from the vehicles to the cloud. The network's streams were explored in order to characterize the available data and select target use cases. The chosen datasets were submitted to different anomaly detection techniques, such as time series forecasting and density-based outlier detection, followed by the trade-offs' analysis to select the algorithms that best modeled the data characteristics. The proposed solution comprises two stages: a lightweight screening step, followed by a Nearest Neighbor classification. The developed system was implemented on Veniam's distributed cluster running Apache Spark, allowing a fast and scalable solution that classifies the data as soon as it reaches the Cloud. The performance of the method was evaluated by its precision, i.e., the percentage of true anomalies within the detected outliers, when it was submitted to datasets presenting artificial anomalies from different data sources, received either by real-time or delay tolerant technologies

    Real-time big data processing for anomaly detection : a survey

    Get PDF
    The advent of connected devices and omnipresence of Internet have paved way for intruders to attack networks, which leads to cyber-attack, financial loss, information theft in healthcare, and cyber war. Hence, network security analytics has become an important area of concern and has gained intensive attention among researchers, off late, specifically in the domain of anomaly detection in network, which is considered crucial for network security. However, preliminary investigations have revealed that the existing approaches to detect anomalies in network are not effective enough, particularly to detect them in real time. The reason for the inefficacy of current approaches is mainly due the amassment of massive volumes of data though the connected devices. Therefore, it is crucial to propose a framework that effectively handles real time big data processing and detect anomalies in networks. In this regard, this paper attempts to address the issue of detecting anomalies in real time. Respectively, this paper has surveyed the state-of-the-art real-time big data processing technologies related to anomaly detection and the vital characteristics of associated machine learning algorithms. This paper begins with the explanation of essential contexts and taxonomy of real-time big data processing, anomalous detection, and machine learning algorithms, followed by the review of big data processing technologies. Finally, the identified research challenges of real-time big data processing in anomaly detection are discussed. © 2018 Elsevier Lt

    Data-driven Predictive Latency for 5G: A Theoretical and Experimental Analysis Using Network Measurements

    Full text link
    The advent of novel 5G services and applications with binding latency requirements and guaranteed Quality of Service (QoS) hastened the need to incorporate autonomous and proactive decision-making in network management procedures. The objective of our study is to provide a thorough analysis of predictive latency within 5G networks by utilizing real-world network data that is accessible to mobile network operators (MNOs). In particular, (i) we present an analytical formulation of the user-plane latency as a Hypoexponential distribution, which is validated by means of a comparative analysis with empirical measurements, and (ii) we conduct experimental results of probabilistic regression, anomaly detection, and predictive forecasting leveraging on emerging domains in Machine Learning (ML), such as Bayesian Learning (BL) and Machine Learning on Graphs (GML). We test our predictive framework using data gathered from scenarios of vehicular mobility, dense-urban traffic, and social gathering events. Our results provide valuable insights into the efficacy of predictive algorithms in practical applications

    A review of the use of artificial intelligence methods in infrastructure systems

    Get PDF
    The artificial intelligence (AI) revolution offers significant opportunities to capitalise on the growth of digitalisation and has the potential to enable the ‘system of systems’ approach required in increasingly complex infrastructure systems. This paper reviews the extent to which research in economic infrastructure sectors has engaged with fields of AI, to investigate the specific AI methods chosen and the purposes to which they have been applied both within and across sectors. Machine learning is found to dominate the research in this field, with methods such as artificial neural networks, support vector machines, and random forests among the most popular. The automated reasoning technique of fuzzy logic has also seen widespread use, due to its ability to incorporate uncertainties in input variables. Across the infrastructure sectors of energy, water and wastewater, transport, and telecommunications, the main purposes to which AI has been applied are network provision, forecasting, routing, maintenance and security, and network quality management. The data-driven nature of AI offers significant flexibility, and work has been conducted across a range of network sizes and at different temporal and geographic scales. However, there remains a lack of integration of planning and policy concerns, such as stakeholder engagement and quantitative feasibility assessment, and the majority of research focuses on a specific type of infrastructure, with an absence of work beyond individual economic sectors. To enable solutions to be implemented into real-world infrastructure systems, research will need to move away from a siloed perspective and adopt a more interdisciplinary perspective that considers the increasing interconnectedness of these systems

    ConvGRU-CNN: Spatiotemporal Deep Learning for Real-World Anomaly Detection in Video Surveillance System

    Get PDF
    Video surveillance for real-world anomaly detection and prevention using deep learning is an important and difficult research area. It is imperative to detect and prevent anomalies to develop a nonviolent society. Realworld video surveillance cameras automate the detection of anomaly activities and enable the law enforcement systems for taking steps toward public safety. However, a human-monitored surveillance system is vulnerable to oversight anomaly activity. In this paper, an automated deep learning model is proposed in order to detect and prevent anomaly activities. The real-world video surveillance system is designed by implementing the ResNet-50, a Convolutional Neural Network (CNN) model, to extract the high-level features from input streams whereas temporal features are extracted by the Convolutional GRU (ConvGRU) from the ResNet-50 extracted features in the time-series dataset. The proposed deep learning video surveillance model (named ConvGRUCNN) can efficiently detect anomaly activities. The UCF-Crime dataset is used to evaluate the proposed deep learning model. We classified normal and abnormal activities, thereby showing the ability of ConvGRU-CNN to find a correct category for each abnormal activity. With the UCF-Crime dataset for the video surveillance-based anomaly detection, ConvGRU-CNN achieved 82.22% accuracy. In addition, the proposed model outperformed the related deep learning models
    • …
    corecore