2,588 research outputs found

    Computationally Efficient Simulation of Queues: The R Package queuecomputer

    Get PDF
    Large networks of queueing systems model important real-world systems such as MapReduce clusters, web-servers, hospitals, call centers and airport passenger terminals. To model such systems accurately, we must infer queueing parameters from data. Unfortunately, for many queueing networks there is no clear way to proceed with parameter inference from data. Approximate Bayesian computation could offer a straightforward way to infer parameters for such networks if we could simulate data quickly enough. We present a computationally efficient method for simulating from a very general set of queueing networks with the R package queuecomputer. Remarkable speedups of more than 2 orders of magnitude are observed relative to the popular DES packages simmer and simpy. We replicate output from these packages to validate the package. The package is modular and integrates well with the popular R package dplyr. Complex queueing networks with tandem, parallel and fork/join topologies can easily be built with these two packages together. We show how to use this package with two examples: a call center and an airport terminal.Comment: Updated for queuecomputer_0.8.

    Statistical and Economic Evaluation of Time Series Models for Forecasting Arrivals at Call Centers

    Full text link
    Call centers' managers are interested in obtaining accurate point and distributional forecasts of call arrivals in order to achieve an optimal balance between service quality and operating costs. We present a strategy for selecting forecast models of call arrivals which is based on three pillars: (i) flexibility of the loss function; (ii) statistical evaluation of forecast accuracy; (iii) economic evaluation of forecast performance using money metrics. We implement fourteen time series models and seven forecast combination schemes on three series of daily call arrivals. Although we focus mainly on point forecasts, we also analyze density forecast evaluation. We show that second moments modeling is important both for point and density forecasting and that the simple Seasonal Random Walk model is always outperformed by more general specifications. Our results suggest that call center managers should invest in the use of forecast models which describe both first and second moments of call arrivals

    Bayesian inference for queueing networks and modeling of internet services

    Get PDF
    Modern Internet services, such as those at Google, Yahoo!, and Amazon, handle billions of requests per day on clusters of thousands of computers. Because these services operate under strict performance requirements, a statistical understanding of their performance is of great practical interest. Such services are modeled by networks of queues, where each queue models one of the computers in the system. A key challenge is that the data are incomplete, because recording detailed information about every request to a heavily used system can require unacceptable overhead. In this paper we develop a Bayesian perspective on queueing models in which the arrival and departure times that are not observed are treated as latent variables. Underlying this viewpoint is the observation that a queueing model defines a deterministic transformation between the data and a set of independent variables called the service times. With this viewpoint in hand, we sample from the posterior distribution over missing data and model parameters using Markov chain Monte Carlo. We evaluate our framework on data from a benchmark Web application. We also present a simple technique for selection among nested queueing models. We are unaware of any previous work that considers inference in networks of queues in the presence of missing data.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS392 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A Spatio-Temporal Point Process Model for Ambulance Demand

    Full text link
    Ambulance demand estimation at fine time and location scales is critical for fleet management and dynamic deployment. We are motivated by the problem of estimating the spatial distribution of ambulance demand in Toronto, Canada, as it changes over discrete 2-hour intervals. This large-scale dataset is sparse at the desired temporal resolutions and exhibits location-specific serial dependence, daily and weekly seasonality. We address these challenges by introducing a novel characterization of time-varying Gaussian mixture models. We fix the mixture component distributions across all time periods to overcome data sparsity and accurately describe Toronto's spatial structure, while representing the complex spatio-temporal dynamics through time-varying mixture weights. We constrain the mixture weights to capture weekly seasonality, and apply a conditionally autoregressive prior on the mixture weights of each component to represent location-specific short-term serial dependence and daily seasonality. While estimation may be performed using a fixed number of mixture components, we also extend to estimate the number of components using birth-and-death Markov chain Monte Carlo. The proposed model is shown to give higher statistical predictive accuracy and to reduce the error in predicting EMS operational performance by as much as two-thirds compared to a typical industry practice

    Forecasting Intraday Time Series with Multiple Seasonal Cycles Using Parsimonious Seasonal Exponential Smoothing

    Get PDF
    This paper concerns the forecasting of seasonal intraday time series. An extension of Holt-Winters exponential smoothing has been proposed that smoothes an intraday cycle and an intraweek cycle. A recently proposed exponential smoothing method involves smoothing a different intraday cycle for each distinct type of day of the week. Similar days are allocated identical intraday cycles. A limitation is that the method allows only whole days to be treated as identical. We introduce an exponential smoothing formulation that allows parts of different days of the week to be treated as identical. The result is a method that involves the smoothing and initialisation of fewer terms than the other two exponential smoothing methods. We evaluate forecasting up to a day ahead using two empirical studies. For electricity load data, the new method compares well with a range of alternatives. The second study involves a series of arrivals at a call centre that is open for a shorter duration at the weekends than on weekdays. By contrast with the previously proposed exponential smoothing methods, our new method can model in a straightforward way this situation, where the number of periods on each day of the week is not the same.Exponential smoothing; Intraday data; Electricity load; Call centre arrivals.

    Bayesian Inference of Arrival Rate and Substitution Behavior from Sales Transaction Data with Stockouts

    Full text link
    When an item goes out of stock, sales transaction data no longer reflect the original customer demand, since some customers leave with no purchase while others substitute alternative products for the one that was out of stock. Here we develop a Bayesian hierarchical model for inferring the underlying customer arrival rate and choice model from sales transaction data and the corresponding stock levels. The model uses a nonhomogeneous Poisson process to allow the arrival rate to vary throughout the day, and allows for a variety of choice models. Model parameters are inferred using a stochastic gradient MCMC algorithm that can scale to large transaction databases. We fit the model to data from a local bakery and show that it is able to make accurate out-of-sample predictions, and to provide actionable insight into lost cookie sales

    Rate-optimal Bayesian intensity smoothing for inhomogeneous Poisson processes

    Get PDF
    We apply nonparametric Bayesian methods to study the problem of estimating the intensity function of an inhomogeneous Poisson process. We exhibit a prior on intensities which both leads to a computationally feasible method and enjoys desirable theoretical optimality properties. The prior we use is based on B-spline expansions with free knots, adapted from well-established methods used in regression, for instance. We illustrate its practical use in the Poisson process setting by analyzing count data coming from a call centre. Theoretically we derive a new general theorem on contraction rates for posteriors in the setting of intensity function estimation. Practical choices that have to be made in the construction of our concrete prior, such as choosing the priors on the number and the locations of the spline knots, are based on these theoretical findings. The results assert that when properly constructed, our approach yields a rate-optimal procedure that automatically adapts to the regularity of the unknown intensity function
    • …
    corecore