7,610 research outputs found

    Shape and data-driven texture segmentation using local binary patterns

    Get PDF
    We propose a shape and data driven texture segmentation method using local binary patterns (LBP) and active contours. In particular, we pass textured images through a new LBP-based filter, which produces non-textured images. In this “filtered” domain each textured region of the original image exhibits a characteristic intensity distribution. In this domain we pose the segmentation problem as an optimization problem in a Bayesian framework. The cost functional contains a data-driven term, as well as a term that brings in information about the shapes of the objects to be segmented. We solve the optimization problem using level set-based active contours. Our experimental results on synthetic and real textures demonstrate the effectiveness of our approach in segmenting challenging textures as well as its robustness to missing data and occlusions

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure

    Bayesian Spatial Binary Regression for Label Fusion in Structural Neuroimaging

    Full text link
    Many analyses of neuroimaging data involve studying one or more regions of interest (ROIs) in a brain image. In order to do so, each ROI must first be identified. Since every brain is unique, the location, size, and shape of each ROI varies across subjects. Thus, each ROI in a brain image must either be manually identified or (semi-) automatically delineated, a task referred to as segmentation. Automatic segmentation often involves mapping a previously manually segmented image to a new brain image and propagating the labels to obtain an estimate of where each ROI is located in the new image. A more recent approach to this problem is to propagate labels from multiple manually segmented atlases and combine the results using a process known as label fusion. To date, most label fusion algorithms either employ voting procedures or impose prior structure and subsequently find the maximum a posteriori estimator (i.e., the posterior mode) through optimization. We propose using a fully Bayesian spatial regression model for label fusion that facilitates direct incorporation of covariate information while making accessible the entire posterior distribution. We discuss the implementation of our model via Markov chain Monte Carlo and illustrate the procedure through both simulation and application to segmentation of the hippocampus, an anatomical structure known to be associated with Alzheimer's disease.Comment: 24 pages, 10 figure

    Joint segmentation of wind speed and direction using a hierarchical model

    Get PDF
    The problem of detecting changes in wind speed and direction is considered. Bayesian priors, with various degrees of certainty, are used to represent relationships between the two time series. Segmentation is then conducted using a hierarchical Bayesian model that accounts for correlations between the wind speed and direction. A Gibbs sampling strategy overcomes the computational complexity of the hierarchical model and is used to estimate the unknown parameters and hyperparameters. Extensions to other statistical models are also discussed. These models allow us to study other joint segmentation problems including segmentation of wave amplitude and direction. The performance of the proposed algorithms is illustrated with results obtained with synthetic and real data

    Informative sample generation using class aware generative adversarial networks for classification of chest Xrays

    Full text link
    Training robust deep learning (DL) systems for disease detection from medical images is challenging due to limited images covering different disease types and severity. The problem is especially acute, where there is a severe class imbalance. We propose an active learning (AL) framework to select most informative samples for training our model using a Bayesian neural network. Informative samples are then used within a novel class aware generative adversarial network (CAGAN) to generate realistic chest xray images for data augmentation by transferring characteristics from one class label to another. Experiments show our proposed AL framework is able to achieve state-of-the-art performance by using about 35%35\% of the full dataset, thus saving significant time and effort over conventional methods
    corecore