15,464 research outputs found

    Unscented Bayesian Optimization for Safe Robot Grasping

    Full text link
    We address the robot grasp optimization problem of unknown objects considering uncertainty in the input space. Grasping unknown objects can be achieved by using a trial and error exploration strategy. Bayesian optimization is a sample efficient optimization algorithm that is especially suitable for this setups as it actively reduces the number of trials for learning about the function to optimize. In fact, this active object exploration is the same strategy that infants do to learn optimal grasps. One problem that arises while learning grasping policies is that some configurations of grasp parameters may be very sensitive to error in the relative pose between the object and robot end-effector. We call these configurations unsafe because small errors during grasp execution may turn good grasps into bad grasps. Therefore, to reduce the risk of grasp failure, grasps should be planned in safe areas. We propose a new algorithm, Unscented Bayesian optimization that is able to perform sample efficient optimization while taking into consideration input noise to find safe optima. The contribution of Unscented Bayesian optimization is twofold as if provides a new decision process that drives exploration to safe regions and a new selection procedure that chooses the optimal in terms of its safety without extra analysis or computational cost. Both contributions are rooted on the strong theory behind the unscented transformation, a popular nonlinear approximation method. We show its advantages with respect to the classical Bayesian optimization both in synthetic problems and in realistic robot grasp simulations. The results highlights that our method achieves optimal and robust grasping policies after few trials while the selected grasps remain in safe regions.Comment: conference pape

    Artificial neural network-statistical approach for PET volume analysis and classification

    Get PDF
    Copyright © 2012 The Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.This article has been made available through the Brunel Open Access Publishing Fund.The increasing number of imaging studies and the prevailing application of positron emission tomography (PET) in clinical oncology have led to a real need for efficient PET volume handling and the development of new volume analysis approaches to aid the clinicians in the clinical diagnosis, planning of treatment, and assessment of response to therapy. A novel automated system for oncological PET volume analysis is proposed in this work. The proposed intelligent system deploys two types of artificial neural networks (ANNs) for classifying PET volumes. The first methodology is a competitive neural network (CNN), whereas the second one is based on learning vector quantisation neural network (LVQNN). Furthermore, Bayesian information criterion (BIC) is used in this system to assess the optimal number of classes for each PET data set and assist the ANN blocks to achieve accurate analysis by providing the best number of classes. The system evaluation was carried out using experimental phantom studies (NEMA IEC image quality body phantom), simulated PET studies using the Zubal phantom, and clinical studies representative of nonsmall cell lung cancer and pharyngolaryngeal squamous cell carcinoma. The proposed analysis methodology of clinical oncological PET data has shown promising results and can successfully classify and quantify malignant lesions.This study was supported by the Swiss National Science Foundation under Grant SNSF 31003A-125246, Geneva Cancer League, and the Indo Swiss Joint Research Programme ISJRP 138866. This article is made available through the Brunel Open Access Publishing Fund

    A Knowledge Gradient Policy for Sequencing Experiments to Identify the Structure of RNA Molecules Using a Sparse Additive Belief Model

    Full text link
    We present a sparse knowledge gradient (SpKG) algorithm for adaptively selecting the targeted regions within a large RNA molecule to identify which regions are most amenable to interactions with other molecules. Experimentally, such regions can be inferred from fluorescence measurements obtained by binding a complementary probe with fluorescence markers to the targeted regions. We use a biophysical model which shows that the fluorescence ratio under the log scale has a sparse linear relationship with the coefficients describing the accessibility of each nucleotide, since not all sites are accessible (due to the folding of the molecule). The SpKG algorithm uniquely combines the Bayesian ranking and selection problem with the frequentist 1\ell_1 regularized regression approach Lasso. We use this algorithm to identify the sparsity pattern of the linear model as well as sequentially decide the best regions to test before experimental budget is exhausted. Besides, we also develop two other new algorithms: batch SpKG algorithm, which generates more suggestions sequentially to run parallel experiments; and batch SpKG with a procedure which we call length mutagenesis. It dynamically adds in new alternatives, in the form of types of probes, are created by inserting, deleting or mutating nucleotides within existing probes. In simulation, we demonstrate these algorithms on the Group I intron (a mid-size RNA molecule), showing that they efficiently learn the correct sparsity pattern, identify the most accessible region, and outperform several other policies

    Training deep neural density estimators to identify mechanistic models of neural dynamics

    Get PDF
    Mechanistic modeling in neuroscience aims to explain observed phenomena in terms of underlying causes. However, determining which model parameters agree with complex and stochastic neural data presents a significant challenge. We address this challenge with a machine learning tool which uses deep neural density estimators-- trained using model simulations-- to carry out Bayesian inference and retrieve the full space of parameters compatible with raw data or selected data features. Our method is scalable in parameters and data features, and can rapidly analyze new data after initial training. We demonstrate the power and flexibility of our approach on receptive fields, ion channels, and Hodgkin-Huxley models. We also characterize the space of circuit configurations giving rise to rhythmic activity in the crustacean stomatogastric ganglion, and use these results to derive hypotheses for underlying compensation mechanisms. Our approach will help close the gap between data-driven and theory-driven models of neural dynamics

    Towards a theory of heuristic and optimal planning for sequential information search

    No full text
    corecore