2,314 research outputs found

    Frequency estimation in multipath rayleigh-sparse-fading channels

    Get PDF
    Maximum-likelihood (ML) data-aided frequency estimation in multipath Rayleigh-fading channels with sparse impulse responses is investigated. We solve this problem under the assumption that the autocorrelation matrix of the pilot signal can be approximated by a diagonal matrix, the fading of different path amplitudes are independent from each other, and the additive noise is white and Gaussian. The ML frequency estimator is shown to be based on combining nonlinearly transformed path periodograms. We have derived the nonlinear function for the two cases: known and unknown fading variances. The new frequency estimators lead, in particular cases, to known ML frequency estimators for nonsparse multipath fading channels. The use of a priori information about the mean number of paths in the channel allows a significant improvement of the accuracy performance. Exploiting the sparseness of the channel impulse response is shown to significantly reduce the threshold signal-to-noise ratio at which the frequency error departs from the Cramer-Rao lower bound. However, precise knowledge of the channel sparseness is not required in order to realize this improvement

    Infinite Factorial Finite State Machine for Blind Multiuser Channel Estimation

    Full text link
    New communication standards need to deal with machine-to-machine communications, in which users may start or stop transmitting at any time in an asynchronous manner. Thus, the number of users is an unknown and time-varying parameter that needs to be accurately estimated in order to properly recover the symbols transmitted by all users in the system. In this paper, we address the problem of joint channel parameter and data estimation in a multiuser communication channel in which the number of transmitters is not known. For that purpose, we develop the infinite factorial finite state machine model, a Bayesian nonparametric model based on the Markov Indian buffet that allows for an unbounded number of transmitters with arbitrary channel length. We propose an inference algorithm that makes use of slice sampling and particle Gibbs with ancestor sampling. Our approach is fully blind as it does not require a prior channel estimation step, prior knowledge of the number of transmitters, or any signaling information. Our experimental results, loosely based on the LTE random access channel, show that the proposed approach can effectively recover the data-generating process for a wide range of scenarios, with varying number of transmitters, number of receivers, constellation order, channel length, and signal-to-noise ratio.Comment: 15 pages, 15 figure

    Timing synchronization in decode-and-forward cooperative communication systems

    Get PDF
    Cooperative communication systems have attracted much attention recently due to their desirable performance gain while using single antenna terminals. This paper addresses the joint timing and channel estimation problem, and furthermore the resynchronization of multiple timing offsets in a cooperative relay system. The estimations of timing and channel are conducted in two phases and the associated Cramér-Rao bounds (CRB) are derived for both phases. It is demonstrated that the conventional CRB is not valid for timing parameters under fading conditions, and a new bound called Weighted Bayesian CRB is proposed. With the timing and channel estimates, a general framework of the resynchronization filter design is developed in order to compensate the multiple timing offsets at the destination. The proposed methods are applied to different scenarios with varying degrees of timing misalignment and are numerically shown to provide excellent performances that approach the perfectly synchronized case. © 2009 IEEE.published_or_final_versio

    Synchronization in digital communication systems: performance bounds and practical algorithms

    Get PDF
    Communication channels often transfer signals from different transmitters. To avoid interference the available frequency spectrum is divided into non-overlapping frequency bands (bandpass channels) and each transmitter is assigned to a different bandpass channel. The transmission of a signal over a bandpass channel requires a shift of its frequency-content to a frequency range that is compatible with the designated frequency band (modulation). At the receiver, the modulated signal is demodulated (frequency shifted back to the original frequency band) in order to recover the original signal. The modulation/demodulation process requires the presence of a locally generated sinusoidal signal at both the transmitter and the receiver. To enable a reliable information transfer, it is imperative that these two sinusoids are accurately synchronized. Recently, several powerful channel codes have been developed which enable reliable communication at a very low signal-to-noise ratio (SNR). A by-product of these developments is that synchronization must now be performed at a SNR that is lower than ever before. Of course, this imposes high requirements on the synchronizer design. This doctoral thesis investigates to what extent (performance bounds) and in what way (practical algorithms) the structure that the channel code enforces upon the transmitted signal can be exploited to improve the synchronization accuracy at low SNR
    corecore