3 research outputs found

    A Balanced Feed Filtering Antenna With Novel Coupling Structure for Low-Sidelobe Radar Applications

    Get PDF
    A fourth-order filtering patch antenna with a novel coupling structure is presented in this paper. Using the proposed coupling structure, both the balanced coupling feed and cross-coupling are realized. Two identical slots etched on the ground plane are utilized to excite the radiating patch with the reduced cross-polarization level. A short slot etched on the ground plane is employed for cross-coupling, which introduces two controllable radiation nulls with a steep roll-off rate. In addition, owing to the split-ring resonators and hairpin resonators, the improved impedance bandwidth is achieved with the fourth-order filtering response. To demonstrate the proposed design techniques, both the filtering antenna element and the low-sidelobe array are designed, fabricated, and measured. The measured results show that the proposed antenna has the impedance bandwidth of 12% (4.78–5.39 GHz) with the total height of 0.06?0 , the cross-polarization level lower than ?31 dB, and two radiation nulls with the suppression higher than 31 dB. For the low-sidelobe antenna array, wide impedance bandwidth is also obtained with the sidelobe level below ?28.7 dB, the cross-polarization level below ?34 dB, and the out-of-band suppression better than 25 dB

    Compact, highly efficient huygens antenna array with low sidelobe and backlobe levels

    Full text link
    An innovative Huygens antenna array is reported. It has a compact cross section and simultaneously exhibits high aperture and radiation efficiencies and low sidelobe level (SLL) and backlobe level. The fundamental system consists of a collinear 1 \times 4 magnetic dipole (MD) array unified with an in-phase collinear 1 \times 4 electric dipole (ED) array. The MD array is realized as TE0.5.0-mode SIW waveguide sections with seamlessly integrated phase inverters. The ED array is accomplished with two metal plates orthogonally connected to the waveguide aperture. Low sidelobes are realized, thanks to a natural magnitude taper of the fields radiated by each Huygens section located further from the waveguide center where its excitation resides. This fundamental array is easily expanded to a 4×,4 array facilitated by an amplitude-weighted 1-to-4 microstrip feed network. An X-band prototype operating at 10 GHz was fabricated and tested. The measured and simulated results are in very good agreement. The measured \vert \text{S}_{11} \vert bandwidth is 570 MHz from 9.63 to 10.2 GHz. The measured realized gain is stable across the entire bandwidth with a 17.5 dBi peak value. All measured SLL and backlobe levels are less than -20 dB. The measured realized aperture efficiency is 67.0% and the simulated radiation efficiency reaches 92%

    Compact-Size Wideband Antennas and Arrays for Wireless Communications

    Get PDF
    Polarization is an important parameter for characterizing antenna systems. Dual-polarized and circularly-polarized wideband antennas with compact size are very useful for mobile communications and satellite communications. Due to the multipath propagation and shadowing in urban environment, radio signals received by mobile terminals can become very weak. Dual-polarized antennas can achieve better signal quality in mobile communications by using polarization diversity. Wideband circularly polarized antennas are very important for mobile satellite communications as circularly polarized signals are immune to Faraday rotation effects. Circular polarization also enables mobile satellite communications without strict alignment between transmit and receive antennas. Therefore, dual-polarized antennas and circularly polarized antennas have been drawn increasing popularity in the wireless communication systems. In this thesis, several novel designs of compact, wideband, and specially functioned antennas and arrays are developed for wireless communication applications. First, wideband antennas and arrays are investigated for base station applications with different appealing features, such as compact radiator size, enhanced upper out-of-band suppression, or low pattern sidelobes. They are designed with different novel design concept, such as shared-dipole, electromagnetic dipoles, shorted dipoles, and fourth-order coupling structure. Then, to directly match to the newly emerged differential circuit systems, several wideband differentially fed dual-polarized antennas are proposed for base station applications. They are designed for high common mode suppression, high harmonic suppression, or compact radiator size by using the idea of orthogonal six-port power divider, multi-resonance structure, and crossed open loop resonators. The final designs are two circularly polarized antennas, which have the wide overlapped impedance and axial ratio bandwidth, or dual circularly polarized radiations realized by using crossed open slot-pairs, orthogonal power diver, and phase shift unit cells. The working principles of these different antennas are extensively illustrated with the relevant design theories and detailed structure studies. The performances of these antennas and arrays are evaluated first by the full-wave electromagnetics simulations, and followed by the measurements of the corresponding fabricated prototypes. Good agreements between the simulated and measured results are obtained. With these different features to accommodate different requirements, these antennas and arrays can be the good candidates for the wireless communication systems
    corecore