321 research outputs found

    Event-tree analysis using binary decision diagrams

    Get PDF
    This paper is concerned with ETA (event-tree analysis) where the branch point event causes are defined using fault trees. Attention is on the nontrivial situation where there are dependencies amongst the branch point events. The dependencies are due to component-failures in more than one of the fault trees. In these situations the analysis methods based on traditional FTA (fault-tree analysis) are inaccurate & inefficient. The inaccuracies are not consistent across the outcome events. If frequency predictions calculated in this way are then used in a risk assessment then the relative riskswould be distorted and could lead to resources being used inappropriately to reduce the overall risk. A new approach using BDD (binary decision diagram) is described which addresses these deficiencies

    Fast and accurate SER estimation for large combinational blocks in early stages of the design

    Get PDF
    Soft Error Rate (SER) estimation is an important challenge for integrated circuits because of the increased vulnerability brought by technology scaling. This paper presents a methodology to estimate in early stages of the design the susceptibility of combinational circuits to particle strikes. In the core of the framework lies MASkIt , a novel approach that combines signal probabilities with technology characterization to swiftly compute the logical, electrical, and timing masking effects of the circuit under study taking into account all input combinations and pulse widths at once. Signal probabilities are estimated applying a new hybrid approach that integrates heuristics along with selective simulation of reconvergent subnetworks. The experimental results validate our proposed technique, showing a speedup of two orders of magnitude in comparison with traditional fault injection estimation with an average estimation error of 5 percent. Finally, we analyze the vulnerability of the Decoder, Scheduler, ALU, and FPU of an out-of-order, superscalar processor design.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness and Feder Funds under grant TIN2013-44375-R, by the Generalitat de Catalunya under grant FI-DGR 2016, and by the FP7 program of the EU under contract FP7-611404 (CLERECO).Peer ReviewedPostprint (author's final draft

    Synthesis and Optimization of Reversible Circuits - A Survey

    Full text link
    Reversible logic circuits have been historically motivated by theoretical research in low-power electronics as well as practical improvement of bit-manipulation transforms in cryptography and computer graphics. Recently, reversible circuits have attracted interest as components of quantum algorithms, as well as in photonic and nano-computing technologies where some switching devices offer no signal gain. Research in generating reversible logic distinguishes between circuit synthesis, post-synthesis optimization, and technology mapping. In this survey, we review algorithmic paradigms --- search-based, cycle-based, transformation-based, and BDD-based --- as well as specific algorithms for reversible synthesis, both exact and heuristic. We conclude the survey by outlining key open challenges in synthesis of reversible and quantum logic, as well as most common misconceptions.Comment: 34 pages, 15 figures, 2 table

    Automated system design optimisation

    Get PDF
    The focus of this thesis is to develop a generic approach for solving reliability design optimisation problems which could be applicable to a diverse range of real engineering systems. The basic problem in optimal reliability design of a system is to explore the means of improving the system reliability within the bounds of available resources. Improving the reliability reduces the likelihood of system failure. The consequences of system failure can vary from minor inconvenience and cost to significant economic loss and personal injury. However any improvements made to the system are subject to the availability of resources, which are very often limited. The objective of the design optimisation problem analysed in this thesis is to minimise system unavailability (or unreliability if an unrepairable system is analysed) through the manipulation and assessment of all possible design alterations available, which are subject to constraints on resources and/or system performance requirements. This thesis describes a genetic algorithm-based technique developed to solve the optimisation problem. Since an explicit mathematical form can not be formulated to evaluate the objective function, the system unavailability (unreliability) is assessed using the fault tree method. Central to the optimisation algorithm are newly developed fault tree modification patterns (FTMPs). They are employed here to construct one fault tree representing all possible designs investigated, from the initial system design specified along with the design choices. This is then altered to represent the individual designs in question during the optimisation process. Failure probabilities for specified design cases are quantified by employing Binary Decision Diagrams (BDDs). A computer programme has been developed to automate the application of the optimisation approach to standard engineering safety systems. Its practicality is demonstrated through the consideration of two systems of increasing complexity; first a High Integrity Protection System (HIPS) followed by a Fire Water Deluge System (FWDS). The technique is then further-developed and applied to solve problems of multi-phased mission systems. Two systems are considered; first an unmanned aerial vehicle (UAV) and secondly a military vessel. The final part of this thesis focuses on continuing the development process by adapting the method to solve design optimisation problems for multiple multi-phased mission systems. Its application is demonstrated by considering an advanced UAV system involving multiple multi-phased flight missions. The applications discussed prove that the technique progressively developed in this thesis enables design optimisation problems to be solved for systems with different levels of complexity. A key contribution of this thesis is the development of a novel generic optimisation technique, embedding newly developed FTMPs, which is capable of optimising the reliability design for potentially any engineering system. Another key and novel contribution of this work is the capability to analyse and provide optimal design solutions for multiple multi-phase mission systems. Keywords: optimisation, system design, multi-phased mission system, reliability, genetic algorithm, fault tree, binary decision diagra

    Fault Trees, Decision Trees, and Binary Decision Diagrams:A systematic comparison

    Get PDF
    Contains fulltext : 239924.pdf (Publisher’s version ) (Closed access)ESREL 202

    Transient Reward Approximation for Continuous-Time Markov Chains

    Full text link
    We are interested in the analysis of very large continuous-time Markov chains (CTMCs) with many distinct rates. Such models arise naturally in the context of reliability analysis, e.g., of computer network performability analysis, of power grids, of computer virus vulnerability, and in the study of crowd dynamics. We use abstraction techniques together with novel algorithms for the computation of bounds on the expected final and accumulated rewards in continuous-time Markov decision processes (CTMDPs). These ingredients are combined in a partly symbolic and partly explicit (symblicit) analysis approach. In particular, we circumvent the use of multi-terminal decision diagrams, because the latter do not work well if facing a large number of different rates. We demonstrate the practical applicability and efficiency of the approach on two case studies.Comment: Accepted for publication in IEEE Transactions on Reliabilit

    SPEA2-based safety system multi-objective optimization

    Get PDF
    Safety systems are designed to prevent the occurrence of certain conditions and their future development into a hazardous situation. The consequence of the failure of a safety system of a potentially hazardous industrial system or process varies from minor inconvenience and cost to personal injury, significant economic loss and death. To minimise the likelihood of a hazardous situation, safety systems must be designed to maximise their availability. Therefore, the purpose of this thesis is to propose an effective safety system design optimization scheme. A multi-objective genetic algorithm has been adopted, where the criteria catered for includes unavailability, cost, spurious trip and maintenance down time. Analyses of individual system designs are carried out using the latest advantages of the fault tree analysis technique and the binary decision diagram approach (BDD). The improved strength Pareto evolutionary approach (SPEA2) is chosen to perform the system optimization resulting in the final design specifications. The practicality of the developed approach is demonstrated initially through application to a High Integrity Protection System (HIPS) and subsequently to test scalability using the more complex Firewater Deluge System (FDS). Computer code has been developed to carry out the analysis. The results for both systems are compared to those using a single objective optimization approach (GASSOP) and exhaustive search. The overall conclusions show a number of benefits of the SPEA2 based technique application to the safety system design optimization. It is common for safety systems to feature dependency relationships between its components. To enable the use of the fault tree analysis technique and the BDD approach for such systems, the Markov method is incorporated into the optimization process. The main types of dependency which can exist between the safety system component failures are identified. The Markov model generation algorithms are suggested for each type of dependency. The modified optimization tool is tested on the HIPS and FDS. Results comparison shows the benefit of using the modified technique for safety system optimization. Finally the effectiveness and application to general safety systems is discussed
    • …
    corecore