3 research outputs found

    Design of Highly Efficient Analog-To-Digital Converters

    Get PDF
    The demand of higher data rates in communication systems is reflected in the constant evolution of communication standards. LTE-A and WiFi 802.11ac promote the use of carrier aggregation to increase the data rate of a wireless receiver. Recent DTV receivers promote the concept of full band capture to avoid the implementation of complex analog operations such as: filtering, equalization, modulation/demodulation, etc. All these operations can be implemented in a robust manner in the digital domain. Analog-to-Digital Converters (ADCs) are located at the heart of such architectures and require to have larger bandwidths and higher dynamic ranges. However, at higher data rates the power efficiency of ADCs tends to degrade. Moreover, while the scale of channel length in CMOS devices directly benefits the power, speed and area of digital circuits, analog circuits suffer from lower intrinsic gain and higher device mismatch. Thus, it has been difficult to design high-speed ADCs with low-power operation using traditional architectures without relying on increasingly complex digital calibration algorithms. This research presents three ADCs that introduce novel architectures to relax the specifications of the analog circuits and reduce the complexity of the digital calibration algorithms. A low-pass sigma delta ADC with 15 MHz of bandwidth is introduced. The system uses a low-power 7-bit quantizer from which the four most significant bits are used for the operation of the sigma delta ADC. The remaining three least significant bits are used for the realization of a frequency domain algorithm for quantization noise improvement. The prototype was implemented in 130 nm CMOS technology. For this prototype, the use of the 7-bit quantizer and algorithm improved the SNDR from 69 dB to 75 dB. The obtained FoM was 145 fJ/conversion-step. In a second project, the problem of high power consumption demanded from closed loop operational amplifiers operating at Giga hertz frequency is addressed. Especially the dependency of the power consumption to the closed loop gain. This project presents a low-pass sigma delta ADC with 75 MHz bandwidth. The traditional summing amplifier used for excess loop compensation delay is substituted by a summing amplifier with current buffer that decouples the power consumption dependency with the closed loop gain. The prototype was designed in 40 nm CMOS technology achieving 64.9 dB peak SNDR. The operating frequency was 3.2 GHz, the total power consumption was 22 mW and FoM of 106 fJ/conversion-step. In a third project, the same approach of decoupling the power consumption requirements from the closed loop gain is applied to a pipelined ADC. The traditional capacitive multiplying DAC used in the residual amplifier is substituted by a current mode DAC and a transimpedance amplifier. The prototype was implemented in 40 nm CMOS technology achieving 58 dB peak SNDR and 76 dB SFDR with 200 MHz sampling frequency. The ADC consumes 8.4 mW with a FoM of 64 fJ/Conversion-step

    Design Considerations for Wide Bandwidth Continuous-Time Low-Pass Delta-Sigma Analog-to-Digital Converters

    Get PDF
    Continuous-time (CT) delta-sigma (ΔΣ) analog-to-digital converters (ADC) have emerged as the popular choice to achieve high resolution and large bandwidth due to their low cost, power efficiency, inherent anti-alias filtering and digital post processing capabilities. This work presents a detailed system-level design methodology for a low-power CT ΔΣ ADC. Design considerations and trade-offs at the system-level are presented. A novel technique to reduce the sensitivity of the proposed ADC to clock jitter-induced feedback charge variations by employing a hybrid digital-to-analog converter (DAC) based on switched-capacitor circuits is also presented. The proposed technique provides a clock jitter tolerance of up to 5ps (rms). The system is implemented using a 5th order active-RC loop filter, 9-level quantizer and DAC, achieving 74dB SNDR over 20MHz signal bandwidth, at 400MHz sampling frequency in a 1.2V, 90 nm CMOS technology. A novel technique to improve the linearity of the feedback digital-to-analog converters (DAC) in a target 11-bits resolution, 100MHz bandwidth, 2GHz sampling frequency CT ΔΣ ADC is also presented in this work. DAC linearity is improved by combining dynamic element matching and automatic background calibration to achieve up to 18dB improvement in the SNR. Transistor-level circuit implementation of the proposed technique was done in a 1.8V, 0.18μm BiCMOS process

    Low Power Analog to Digital Converters in Advanced CMOS Technology Nodes

    Get PDF
    The dissertation presents system and circuit solutions to improve the power efficiency and address high-speed design issues of ADCs in advanced CMOS technologies. For image sensor applications, a high-performance digitizer prototype based on column-parallel single-slope ADC (SS-ADC) topology for readout of a back-illuminated 3D-stacked CMOS image sensor is presented. To address the high power consumption issue in high-speed digital counters, a passing window (PW) based hybrid counter topology is proposed. To address the high column FPN under bright illumination conditions, a double auto-zeroing (AZ) scheme is proposed. The proposed techniques are experimentally verified in a prototype chip designed and fabricated in the TSMC 40 nm low-power CMOS process. The PW technique saves 52.8% of power consumption in the hybrid digital counters. Dark/bright column fixed pattern noise (FPN) of 0.0024%/0.028% is achieved employing the proposed double AZ technique for digital correlated double sampling (CDS). A single-column digitizer consumes total power of 66.8μW and occupies an area of 5.4 µm x 610 µm. For mobile/wireless receiver applications, this dissertation presents a low-power wide-bandwidth multistage noise-shaping (MASH) continuous-time delta-sigma modulator (CT-ΔΣM) employing finite impulse response (FIR) digital-to-analog converters (DACs) and encoder-embedded loop-unrolling (EELU) quantizers. The proposed MASH 1-1-1 topology is a cascade of three single-loop first-order CT-ΔΣM stages, each of which consists of an active-RC integrator, a current-steering DAC, and an EELU quantizer. An FIR filter in the main 1.5-bit DAC improves the modulator’s jitter sensitivity performance. FIR’s effect on the noise transfer function (NTF) of the modulator is compensated in the digital domain thanks to the MASH topology. Instead of employing a conventional analog direct feedback path, a 1.5-bit EELU quantizer based on multiplexing comparator outputs is proposed; this approach is suitable for highspeed operation together with power and area benefits. Fabricated in a 40-nm low-power CMOS technology, the modulator’s prototype achieves a 67.3 dB of signal-to-noise and distortion ratio (SNDR), 68 dB of signal-to-noise ratio (SNR), and 68.2 dB of dynamic range (DR) within 50.5 MHz of bandwidth (BW), while consuming 19 mW of total power (P). The proposed modulator features 161.5 dB of figure-of-merit (FOM), defined as FOM = SNDR + 10 log10 (BW/P)
    corecore