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ABSTRACT 

 

Design Considerations for Wide Bandwidth Continuous-Time Low-Pass 

Delta-Sigma Analog-to-Digital Converters. (December 2010) 

Aravind Kumar Padyana, B.E., R. V. College of Engineering, Bangalore, India 

Co-Chairs of Advisory Committee: Dr. Jose Silva-Martinez 
          Dr. Aydin I. Karsilayan 

 

 Continuous-time (CT) delta-sigma (ΔΣ) analog-to-digital converters (ADC) have 

emerged as the popular choice to achieve high resolution and large bandwidth due to 

their low cost, power efficiency, inherent anti-alias filtering and digital post processing 

capabilities.  

 This work presents a detailed system-level design methodology for a low-power 

CT ΔΣ ADC. Design considerations and trade-offs at the system-level are presented. A 

novel technique to reduce the sensitivity of the proposed ADC to clock jitter-induced 

feedback charge variations by employing a hybrid digital-to-analog converter (DAC) 

based on switched-capacitor circuits is also presented. The proposed technique provides 

a clock jitter tolerance of up to 5ps (rms). The system is implemented using a 5th order 

active-RC loop filter, 9-level quantizer and DAC, achieving 74dB SNDR over 20MHz 

signal bandwidth, at 400MHz sampling frequency in a 1.2V, 90 nm CMOS technology.  

 A novel technique to improve the linearity of the feedback digital-to-analog 

converters (DAC) in a target 11-bits resolution, 100MHz bandwidth, 2GHz sampling 

frequency CT ΔΣ ADC is also presented in this work. DAC linearity is improved by 

combining dynamic element matching and automatic background calibration to achieve 

up to 18dB improvement in the SNR. Transistor-level circuit implementation of the 

proposed technique was done in a 1.8V, 0.18µm BiCMOS process. 
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1. INTRODUCTION 

 

1.1 Motivation 

Recent developments in mobile computing and broadband wireless 

communications have led to a strong need for low power and cost effective analog-to-

digital converters. Broadband analog-to-digital converters have been identified as a 

relevant need in the International Technology Roadmap for Semiconductors (ITRS). The 

quest for higher data rates is leading to the proliferation of standards with larger signal 

bandwidths. Mobile and broadband wireless standards are increasingly being adopted by 

the industry. 

In order to take advantage of technology scaling and software reconfigurability, 

the current approach in RF receiver design is to digitize the RF information as close as 

possible to the antenna and perform most of the signal processing in the digital domain 

resulting in a flexible and reconfigurable receiver. Figure 1 shows the direct conversion 

wireless radio receiver architecture.  

 

 
Figure 1. Direct-conversion radio receiver architecture 

 

In the traditional super-heterodyne radio architecture, the received signal is digitized at  

____________ 
This thesis follows the style of IEEE Journal of Solid-State Circuits. 
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an intermediate frequency after significant analog pre-processing consisting of down-

conversion, filtering, and amplification. In the direct-conversion architecture, the 

received signal is digitized in baseband, with filtering and amplification performed in the 

digital domain. Hence, direct-conversion (DC) architecture is usually preferred for 

broadband receivers because of lower power consumption and fewer external 

components compared to a super-heterodyne approach. However, the reduction in 

system complexity is at the expense of increased bandwidth, resolution, linearity and 

dynamic range requirements on the analog-to-digital converter (ADC).  

 

1.2 Application Space 

Modern wireless receivers are required to provide support for multiple 

communication standards on a single chip.  

 

 
Figure 2. Modern communication standards 

 

As shown in Figure 2, various wireless communication standards are used 

depending on the mobility range and the data rate. Cell phone communication standards 

such as GSM (Global System for Mobile communications), GPRS (General Packet 

Radio Service), EDGE (Enhanced Data rates for GSM Evolution), UMTS (Universal 

Mobile Telecommunication System), HSDPA (High-Speed Downlink Packet Access) 
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require full mobility. Communication network standards such as WiMAX (Worldwide 

interoperability for Microwave Access), WLAN (Wireless Local Area Network), IEEE 

802.20 MBWA (Mobile Broadband Wireless Access), ZigBee, Bluetooth, UWB (Ultra 

Wide Band) require limited mobility. 

 

 
Figure 3. Application space of broadband analog-to-digital converters 

 

The broad application space of analog-to-digital converters is shown in Figure 3. 

Internet and computer technologies have revolutionized communication and 

entertainment in recent times. These technologies are expected to be available to a large 

population in the form of ultra-mobile, wireless internet enabled multimedia devices 

with low cost, low power analog interface circuits. Broadband wireless networks require 

high resolution analog-to-digital conversion solutions, especially in multi-standard 

receiver applications where the desired signal has to be detected in the presence of 

strong interferers. Direct-conversion receiver solutions offering high resolution over a 

signal bandwidth have recently been reported [1-10]. 
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1.3 Delta-Sigma ADCs 

Delta-Sigma (ΔΣ) ADCs are a popular choice in wireless applications due to their 

high dynamic range and low power consumption. Delta-Sigma ADCs are broadly 

classified into two categories, Discrete-time (DT) ΔΣ ADCs that employ switched-

capacitor filters, and Continuous-time (CT) ΔΣ ADCs which use continuous-time filters. 

Due to reduced settling time requirements on the amplifiers used to realize the filters, CT 

ΔΣ ADCs are more power efficient compared to DT ΔΣ ADCs. Additionally, CT ΔΣ 

ADCs offer inherent anti-alias filtering. Hence, CT ΔΣ ADCs have emerged as the 

popular choice for realizing high resolution, high bandwidth ADCs. However, the main 

drawbacks of CT ΔΣ ADCs are increased sensitivity to clock jitter, susceptibility to time 

constant variations and excess loop delay. Despite these disadvantages, there has been a 

tremendous interest in CT ΔΣ ADCs as seen by papers published in the recent literature. 

The focus of this work is to develop system-level and circuit-level design 

techniques for high resolution, wide bandwidth, low power CT ΔΣ ADCs suitable for 

wireless applications. 

 

1.4 Thesis Organization 

This thesis describes the detailed system-level design of a low power (less than 

20mW), 12-bit, 20MHz bandwidth CT ΔΣ ADC. A novel hybrid DAC scheme is 

presented to improve tolerance to clock jitter. Additionally, a linearity enhancement 

technique for multi-bit digital-to-analog converters implemented for a 12-bit, 100MHz 

CT ΔΣ ADC is also presented. 

Section 2 provides an overview of sampling and quantization in ADCs. The basic 

principles of operation in ΔΣ ADCs and most critical non-idealities are explained briefly. 

A literature survey of recently reported work on wideband ΔΣ ADCs is also presented. 

Section 3 presents the detailed system-level design methodology of a 12-bit, 

20MHz CT ΔΣ ADC and corresponding simulation results.  
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Section 4 explains the issues of clock jitter in CT ΔΣ ADCs in detail. A clock 

jitter tolerant hybrid digital-to-analog converter (DAC) architecture is proposed and 

simulation results are presented. 

Section 5 discusses the effects of DAC non-linearity in CT ΔΣ ADCs. DAC 

linearization techniques are proposed for a multi-bit design used in an 11-bit, 100MHz 

bandwidth CT ΔΣ ADC. Section 6 presents summary and conclusions. 
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2. CONTINUOUS-TIME DELTA-SIGMA ADCs 

 

Significant advances in technology have enabled rapid developments in the field 

of digital signal processing (DSP) which operate on signals that are digital in nature, that 

is, discrete in time with amplitude quantization. However, real world signals are 

fundamentally analog in nature, being continuous in time and amplitude. Hence, there is 

a need for efficiently converting information between the analog and digital domains. 

The generic block diagram of a mixed-signal system is as shown in Figure 4. 

 

 

 
Figure 4. Generic block diagram of a mixed-signal system 

 

2.1 Sampling and Quantization 

The generalized block diagram of an analog-to-digital conversion process is 

illustrated in Figure 5. The analog input signal to the system contains useful information 

up to a frequency of Fin. The input is sampled at a frequency Fs to obtain a discrete-time 

signal. By Nyquist theorem, in order to avoid loss of information, the sampling 

frequency Fs should be at least twice the maximum input signal frequency, that is, 2*Fin.  

 

 
Figure 5. Analog-to-digital conversion 
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However, frequency components above Fin are folded back or aliased into the bandwidth 

of the input signal, making them indistinguishable from the original signal. Ideally, the 

anti-alias filter is a brick-wall filter with a cutoff frequency equal to 2*Fin that 

completely attenuates input signal frequency components greater than Fin. The sampled 

signal is discrete in time and continuous in amplitude. The quantizer converts the 

sampled signal into a discrete-time, discrete-level signal by mapping the signal into a 

finite number of allowable output levels based on the corresponding quantization 

interval. Assuming that the quantization error has uniform probability density function 

and provided the quantization errors are sufficiently random in nature, for any N-bit 

quantizer, the quantization noise power always extends from DC to Fs/2 with a mean 

square value given by [11], 

 

 
σ

∆
12

(2.1) 

 

where the quantization step (Δ) is defined by (2.2) for a reference voltage of ±Vref. 

 

 ∆
2V
2N 1

(2.2) 

 

In a Nyquist-rate ADC, the sampling frequency is twice the bandwidth of the 

input signal, that is, 2*Fin. The quantization noise power is assumed to be white with a 

uniform spectral density distribution between DC and Fs/2 as shown in Figure 6. In 

reality, Fs is chosen to be slightly greater than 2*Fin in order to relax the requirements on 

the anti-alias filter. 
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Figure 6. Quantization noise in a Nyquist-rate ADC 

 

For an N-bit Nyquist-rate ADC, the maximum signal-to-quantization-noise ratio 

is given by, 

 

 SQNR dB 6.02N 1.76 (2.3) 

 

indicating that the resolution of the ADC improves by 1-bit for every 6-dB improvement 

in SQNR. 

 

2.2 Oversampling and Noise-shaping 

As discussed in Section 2.1, the quantization noise power always extends from 

DC to Fs/2 and the total quantization noise power has to satisfy relation (2.1).  Hence, if 

Fs is increased to higher values, the quantization noise power is spread over a larger 

range of frequencies resulting in a reduction in the total quantization noise over the input 

frequency range. This principle is exploited in oversampled ADCs where Fs >> 2*Fin. 

The total in-band quantization noise power is given by, 

 

 
N

σ
OSR (2.4) 

where the oversampling ratio is defined as, 
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 OSR
F
2F  (2.5) 

 

The maximum SQNR for an oversampled ADC is given by, 

 

 SQNR dB 6.02N 1.76 10 log OSR (2.6) 

 

(2.6) indicates that oversampling improves the ADC performance at the rate of 

3dB/octave or equivalently, 0.5bit/octave. 

A more efficient way to use oversampling is to shape the spectral density such 

that most of the quantization noise power is outside the band of interest as shown in 

Figure 7. The principle of noise-shaping is used in ΔΣ ADCs where the noise in shaped 

in such a manner so as to not affect the desired signal band. It can be concluded that 

quantization noise-shaping can be achieved by modifying the original quantization noise 

with a high-pass transfer function. 

 

Po
w

er

 
Figure 7. Quantization noise in an oversampled ADC 
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2.3 Delta-Sigma Analog-to-Digital Converters 

2.3.1 Basic Principles 

A delta-sigma (ΔΣ) ADC is an oversampled analog-to-digital converter where the 

quantization noise is shaped to greatly reduce the in-band quantization noise power 

resulting in a high SQNR within the signal bandwidth. The basic components of a 

discrete-time ΔΣ ADC are shown in Figure 8 [12]. 

 

 
Figure 8. Block diagram of a discrete-time ΔΣ ADC 

 

The system consists of a loop filter in the forward path of the loop, an internal 

low-resolution ADC and digital-to-analog converter (DAC). Using the linearized z-

domain model, the output is given by, 

 

 V z STF. U z NTF. E z  (2.7) 

 

where the signal transfer function (STF) and noise transfer function (NTF) are defined 

as, 

 

 
STF

V z
U z

H z
1 H z  (2.8) 
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NTF

E z
U z

1
1 H z  (2.9) 

 

The digital output is processed by a decimation filter and subsequently passed 

through additional digital filters to attenuate out-of-band quantization noise to obtain the 

final output at the Nyquist rate. The loop filter is typically implemented as a low-pass 

filter resulting in a discrete-time low-pass ΔΣ ADC. 

In a first order discrete-time ΔΣ ADC, the loop filter is a first-order integrator 

with H(z), STF and NTF given by, 

 

 
H z

z
1 z ; STF z ; NTF 1 z  (2.10) 

 

(2.10) shows that the signal is only delayed by one sample and hence, appears 

unaltered at the output whereas the quantization noise is shaped by a first-order high-

pass transfer function.  

In general, by using a Lth order loop filter, which can be realized by cascading L 

first order integrators, the quantization noise is shaped more aggressively by a NTF 

given by, 

 

 NTF 1 z L (2.11) 

 

The in-band integrated quantization noise power and the maximum SQNR are given by, 

 

 
N

σ π L

2L 1 OSR L  (2.12) 

 

 SQNR dB 6.02N 1.76 2L 1 10 log OSR

10 log
π L

2L 1 
(2.13) 
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(2.13) shows that Lth-order noise-shaping improves the ADC performance at the 

rate of (6L+3)dB/octave or equivalently, (L+0.5)bits/octave. 

 

2.3.2 Discrete-time vs. Continuous-time ΔΣ ADCs 

DT ΔΣ ADCs are implemented using switched-capacitor (SC) circuits or 

switched-current (SI) circuits and are predominantly used for low frequency applications 

where high resolution is required over very low signal bandwidths. CT ΔΣ ADCs use 

continuous-time circuits to implement the loop filter and offer several advantages over 

DT ΔΣ ADCs [13-14].  

1. Due to the use of switched capacitor circuits in DT ΔΣ ADCs, the maximum sampling 

frequency is limited by the achievable op-amp bandwidth and required settling time in 

the technology. In comparison, CT ΔΣ ADCs impose significantly relaxed requirements 

on op-amp bandwidths. This implies that for comparable performance, CT ΔΣ ADCs 

consume significantly lesser power than DT ΔΣ ADCs. 

2. In a DT ΔΣ ADC, the input to the system is a sampled signal. Sampling errors at the 

input appear directly in the digital output, thereby degrading the SNR. In contrast, in a 

CT ΔΣ ADC, the sampling operation occurs at the input of the quantizer and hence, 

sampling errors are heavily suppressed by the high in-band loop gain of the preceding 

filter. Additionally, this also reduces the thermal noise contribution of the first integrator 

stage as the high frequency thermal noise is filtered substantially by the loop filter before 

sampling, thereby avoiding aliasing. 

3. An explicit anti-alias filter is required at the input of a DT ΔΣ ADC. CT ΔΣ ADCs 

possess an inherent anti-aliasing characteristic. 

4. In a DT ΔΣ ADC, large glitches appear on the op-amp virtual ground node due to 

switching transients. In contrast, virtual ground nodes can be kept very quiet in CT ΔΣ 

ADCs. 
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5. In DT ΔΣ ADCs, integrator time constants are set capacitor ratios which can be 

controlled to an accuracy of up to 1%. In CT ΔΣ ADCs, integrator time constants are set 

by resistor-capacitor products which can vary up to 30%. Hence, CT ΔΣ ADCs require 

tuning and calibration schemes to accurately control the integrator time constants. 

 

2.4 Continuous-time ΔΣ ADCs Non-idealities 

Non-idealities in a ΔΣ ADC can be modeled as error signals which introduce 

noise and distortion into the system and can have drastically different effects based on 

the point at they are input. Figure 9 shows the error sources at different points in a ΔΣ 

modulator [15].  

 

 

Figure 9. Input locations for non-idealities in a continuous-time ΔΣ ADC 
 

Ei(s) represents the input referred noise and distortion of the corresponding 

integrator stage Hi(s), Eq(s) represents the errors entering the system at the internal 

quantizer and EDAC(s) represents the errors of the feedback DAC. A ΔΣ ADC is most 

sensitive to any error that occurs at the input of the modulator. The transfer function 

from the error sources at the input of the modulator, that is, E1 and EDAC to the output is 

given by, 
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 V
E

V
EDAC

H
1 H 1 (2.14) 

 

where H is the loop filter transfer function. 

Hence, the in-band components of the error sources E1and EDAC appear at the 

output of the modulator without any suppression. The most dominant contributors of 

EDAC are the errors due to clock jitter and DAC non-linearity. The feedback DAC 

requires linearity close to the resolution of the overall modulator. The transfer function 

from Eq to the modulator output is given by, 

 

 V
E

1
1 H (2.15) 

 

The in-band components of the errors sources located at other points in the 

system are less critical. Eq is heavily suppressed by the high in-band loop gain of the 

preceding filter. Errors Ei (i>1) at the various stages of the loop filter are also suppressed 

by the in-band gain of the preceding filter stages. 

 

2.4.1 DAC Non-idealities 

The most important DAC non-idealities are errors caused due to clock jitter, 

DAC non-linearity, slew rate of the DAC outputs and errors caused due to excess loop 

delay. 

 Clock jitter causes a statistical variation in the edge or duration of the feedback 

DAC pulse. Since a CT ΔΣ ADC integrates the feedback waveform over time, a 

statistical variation of the feedback waveform results in a statistical integration error 

leading to an increase in the in-band noise. Clock jitter is explained in detail in Section 

4. 
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 DAC non-linearity is caused when different output levels of the DAC are 

affected by mismatch. The variation in the feedback levels yields a signal-dependent 

feedback charge error which is directly fed to the modulator input.  

The DAC outputs also exhibit a finite slew rate with unequal rise and fall times 

which cause an effect similar to inter-symbol interference (ISI). These error sources 

cause additional noise and tones in the spectrum that fold into the baseband and degrade 

modulator performance. 

 Excess loop delay (ELD) is a timing non-ideality which can be considered as a 

constant delay between the ideal and implemented DAC feedback pulse. ELD can occur 

due to the finite response time of the DAC outputs to its clock and inputs, and the 

decision time required by the quantizer which in turn affects the latches used for 

synchronizing the DAC inputs. ELD causes a variation in the implemented loop filter 

coefficients and also leads to an increased modulator order, both of which can cause 

system instability. 

 

2.4.2 Filter Non-idealities 

 The most important filter non-idealities are due to finite op-amp gain, integrator 

time constant variation, finite amplifier gain-bandwidth product, finite slew rate, limited 

output swing, amplifier noise and non-linearity. 

Finite DC gain in the op-amp causes all zeros of the NTF to move away from 

DC, which reduces the amount of attenuation in the baseband. Finite amplifier gain-

bandwidth product causes incomplete settling of the integrator outputs leading to an 

increase in the in-band quantization noise.  

Finite amplifier slew rate is a non-linear effect which causes an increase in the 

harmonic distortion and in-band quantization noise due to the limited current capability 

of the op-amp output stage.  

Limited output swing capability of the op-amps causes a signal-dependent 

variation in the integrator outputs, thereby introducing non-linearity in the modulator 

output.  
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Additionally, circuit noise and non-linearity of the first integrator at the loop 

filter are particularly important since they significantly contribute to the overall noise 

floor of the modulator. 

One of the major non-idealities of the filter is the integrator time constant error. 

Integrator time constants are mapped into resistor–capacitor products which are known 

to vary over process and temperature by up to 30%. 

 

2.4.3 Quantizer Non-idealities 

The quantizer is preceded by several high gain stages; hence, ΔΣ ADCs are 

insensitive to DC offset and non-linearity introduced by the internal quantizer. However, 

quantizer metastability and signal-dependent quantizer delay causes a random variation 

in the rising and falling edges of the quantizer outputs resulting in an effect similar to 

clock jitter, therby causing degradation in the output SNR. 

 

2.5 Literature Survey 

 As discussed in Section 2.3.2, CT ΔΣ ADCs offer several advantages and 

consequently have attracted a lot of attention as digital-friendly architecture for ADC 

since a substantial part of the signal processing is performed in the digital domain. Table 

1 shows recently reported wide bandwidth continuous-time ΔΣ ADCs. 

Due to the widespread use of CMOS technology for digital applications, it has 

emerged as the technology of choice for cost-conscious designs as it enables easy 

integration with further downstream digital processing. This is evident from publications 

such as [1-5] showing modulator implementations in the most advanced process 

technology nodes. Additionally, recently reported literature [1-2] propose innovative 

techniques to utilize the high speed capabilities of nanometric CMOS technologies by 

using resolution in the time domain compared to the traditional way of representing 

signals in the voltage domain. Although these CMOS implementations achieve high 
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resolutions with low power consumption, the bandwidths achieved are limited to the 20-

25MHz range. 

 

Table 1. Comparison of prior art on wide bandwidth ΔΣ ADCs 

Ref. Technology Sampling 

Freq (Hz) 

Bandwidth 

(Hz) 

SNR 

(dB) 

SNDR 

(dB) 

Power 

(mW) 

[1] 65nm CMOS 250M 20M 62 60 10.5 

[2] 130nm CMOS 900M 20M 81.2 78.1 87 

[3] 90nm CMOS 420M 20M 72 70 27.9 

[4] 180nm CMOS 400M 25M 53 52 18 

[5] 130nm CMOS 640M 20M 76 74 20 

[6] SiGe HBT 35G 100M 58.9 53.1 350 

[7] SiGe HBT 20G 312.5M 30.5 - 490 

[8] InP HBT 8G 250M - 40 1800 

[9] InGaAs HBT 18G 500M - 42  1500 

[10] InGaAs HEMT 5G 100M 43 39 400 

 

 

Previous works reported in [8-10] have achieved moderate resolutions over very 

wide bandwidths (>100MHz) with large power consumption. They make use of 

expensive III-V process technologies which provide very high-fT transistors with high 

current capability. However, these technologies are limited in their use to niche 

applications.  
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3. SYSTEM-LEVEL DESIGN OF A 12-BIT, 20MHz CT ΔΣ ADC 

 

It is convenient to examine a DT ΔΣ ADC using a mathematical model and 

hence, easier to simulate on a computer. The prevalence of DT ΔΣ ADCs has led to the 

development of several tools and extensive design methodologies such as the ΔΣ toolbox 

for MATLAB [16]. Consequently, a common approach in the design of a CT ΔΣ ADC is 

to perform the initial design in the DT domain and then use impulse-invariant 

transformation to obtain an equivalent realization in the CT domain. The design 

methodology of a CT ΔΣ ADC is presented in detail in this section. 

 

3.1 System-level Design Considerations 

3.1.1 Order 

The number of integrators used in to realize the loop filter determines the order 

(L) of the ΔΣ modulator. 2nd order modulators are widely used since they are inherently 

stable. Higher SQNR can be achieved by increasing the order of the modulator at the 

cost of reduced stability and robustness to process, voltage, and temperature (PVT) 

variations. 

 

3.1.2 Oversampling Ratio 

It can be noted from (2.13) that the maximum achievable SQNR can be increased 

by using a higher oversampling ratio (OSR). However, for a given desired signal 

bandwidth, a higher OSR translates to a higher sampling frequency, which is limited by 

the fT of the technology. Also, a higher sampling frequency leads to increased power 

consumption. Several reported low-power, wide bandwidth modulators use a low OSR 

typically in the range 8-16 [1], [3-5]. 
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3.1.3 Quantizer Resolution 

For a fixed voltage reference, increasing the number of levels in the quantizer 

reduces the quantization interval and hence, leads to a lower quantization noise and a 

higher SQNR. Additionally, a higher quantizer resolution also improves the stability of 

the modulator and tolerance to clock-jitter. However, power and area requirements of 

quantizer rise exponentially with the number of bits and impose stringent linearity 

requirements on the feedback DACs.  

 

3.1.4 Maximum Noise Transfer Function Gain 

For frequencies outside the signal bandwidth, the NTF gain increases at a rate of 

6L dB/octave and reaches a maximum at Fs/2. The maximum NTF gain determines the 

aggressiveness of the noise-shaping and a higher SQNR is obtained by increasing the 

maximum NTF gain. However, increasing the maximum NTF gain degrades stability 

and increases sensitivity to clock-jitter. 

 

3.1.5 Maximum Stable Amplitude 

The internal quantizer is overloaded if its input is greater than its full-scale 

reference voltage.  Under these conditions, the feedback loop is broken and the internal 

nodes of the modulator saturate, leading to instability. Hence, the maximum input that 

can be applied to the ADC must be smaller than the quantizer range and is termed as 

maximum stable amplitude (MSA). MSA can be increased by increasing the quantizer 

resolution or reducing the aggressiveness of the noise-shaping. 

 

3.2 System-level Parameters 

The target specifications for the low-power, wide bandwidth CT ΔΣ ADC 

implemented in IBM 90nm CMOS technology in this work are listed in Table 2. 
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Table 2. Target specifications for the wide bandwidth CT ΔΣ ADC 

Performance parameter Specification 

Signal bandwidth 20MHz 

Peak SNR/ Effective no. of bits (ENOB) 74dB/12-bit 

Power consumption < 20mW 

Clock-jitter tolerance ≤ 7ps rms 

 

 

The MATLAB ΔΣ toolbox was used to obtain an optimum noise transfer 

function (NTF) that satisfied the desired specifications. The system-level variables 

which are available to perform this optimization in the design space are order of the 

modulator (L), oversampling ratio (OSR), quantizer resolution (N) and maximum NTF 

gain (NTFmax). The total noise contribution at the input of the ADC is due to 

quantization noise, circuit noise (thermal and flicker), noise due to DAC clock-jitter, 

amplifier non-linearity and distortion and DAC non-linearity. Assuming that 15% of the 

total noise contribution is due to the quantization noise, the target SQNR should be 

approximately 78-80dB. 

 

3.2.1 NTF Realization 

In order to reduce noise contribution due to DAC clock-jitter, a novel hybrid 

DAC scheme using switched-capacitor techniques has been proposed in this work which 

is explained in great detail in Section 4. However, settling time requirements on the first 

integrator stage of the loop filter with reasonable power consumption limited the 

sampling frequency to 400MHz. From (2.5), this value corresponds to an OSR of 10. It 

was determined through simulations that with an OSR of 10, a 5th order modulator is 

required to achieve the desired SQNR. 

With the modulator order and OSR now fixed, a parametric simulation was 

performed to determine the optimum values for NTFmax and quantizer resolution based 
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on the system-level considerations discussed in Section 3.1. Figure 10 illustrates a 3-D 

plot of the peak SQNR vs NTFmax and number of quantizer levels. The achievable MSA 

vs NTFmax and quantizer levels is shown in Figure 11. 
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The NTF obtained from the MATLAB ΔΣ toolbox realizes NTF zeros with 

infinite quality factors. For practical realization, it is desirable to implement NTF zeros 

with low quality factors in order to minimize the sensitivity to saturation of the internal 

nodes and also, to minimize sensitivity to PVT variations. The following relationships 

were applied to the biquadratic terms in the NTF to realize NTF zeros with finite quality 

factors. 

 

 
αT

βT
4Q 1

 (3.1) 

 

 r e  (3.2) 

 

 Biquad term→ z re z re

z 2r cos β z r  
(3.3) 

 

where α maps the z-vector to a point inside the unit circle in the z-plane, β is the 

normalized NTF zero frequency, Q is the quality factor of the biquad and Ts is the 

sampling period. A 5th order modulator is realized using two biquadratic sections and a 

single first order integrator. Using the values for L, OSR, N and NTFmax as explained 

above, a parametric simulation is performed by varying the Q values of the two biquads 

and calculating the corresponding maximum achievable SQNR as shown in Figure 12. It 

can be observed that the Q values can be reduced to as low as 2 while still achieving 

80dB SQNR. To provide some design margin, Q values of 4 and 3 were chosen for the 

10.8MHz and 18.1MHz biquads, respectively. Figures 13 shows the variation of MSA 

with the Q values of the biquads. 

 



23 
 

 

0
2

4
6

8

0
2

4
6

8
65

70

75

80

85

Q2 (ω 0 = 10.8MHz)

Peak SQNR vs Biquad Quality Factors
L = 5, OSR = 10, N = 9

Q1 (ω 0 = 18.1MHz)

Pe
ak

 S
Q

N
R

 (d
B

)

Figure 12. Peak SQNR vs. biquad quality factors 
 

 

0
2

4
6

8

0
2

4
6

8
-4

-3.5

-3

-2.5

-2

-1.5

Q2 (ω 0 = 10.8MHz)

MSA vs Biquad Quality Factors
L = 5, OSR = 10, N = 9

Q1 (ω 0 = 18.1MHz)

M
SA

 (d
B

)

Figure 13. MSA vs. biquad quality factors 



24 
 

The variation of NTFmax with biquad quality factors is shown in Figure 14. 
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Table 3. System-level parameters for the proposed CT ΔΣ ADC 

Parameter Value 

Sampling Frequency 400MHz 

OSR 10 

Signal Bandwidth 20MHz 

Order 5 

Quantizer levels 9 

Peak SQNR 84dB 

NTFmax 3.5 

MSA -3dBFS 
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The desired region of operation for the system is also indicated in Figures 10-14. 

The NTF parameters that results in the desired SQNR are summarized in Table 3. The 

magnitude response of the NTF is shown in Figure 15.  
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The discrete-time noise transfer function NTF(z) is given by, 

 

 NTF z

1 0.95z 1 1.93z 0.95z 1 1.83z 0.91z
1 0.45z 1 0.91z 0.26z 1 1.06z 0.58z  

(3.4)

 

NTF(z) represents a 5th-order inverse-chebyshev high-pass filter with a real pole 

at 3MHz and two pairs of complex poles at 10.1MHz and 18.1MHz with Q values of 4 

and 3, respectively. The discrete-time loop filter transfer function L(z) can be calculated 

from NTF(z) using the relationship, 
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 L z
1

NTF z 1     (3.5) 

 

Hence, the discrete-time loop transfer function is given by, 

 

 L z

2.29z 1 1.31z 0.45z 1 1.44z 0.75z
1 0.95z 1 1.93z 0.95z 1 1.83z 0.91z  

(3.6)

 

Figure 16 plots the input amplitude vs SQNR of the 5th-order DT ΔΣ ADC 

implemented using the parameters in Table 3. 
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Figure 16. SQNR vs. input amplitude of the discrete-time ΔΣ modulator 
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As described in Section 2, excess loop delay causes a variation in the loop filter 

coefficients and may cause system instability. In order to compensate for ELD, the loop 

filter coefficients have to be adjusted depending on the amount of delay. The procedure 

to incorporate ELD during the computation of L(z) is described in [5], [17]. An excess 

loop delay of one clock cycle is considered in this design. The modified L(z) is obtained 

by factoring out one sample delay from (3.6) and is given as (3.7), 

 

 L z

2.29

4.49 1 1.43z 0.53z 1 1.57z 0.79z
1 0.95z 1 1.93z 0.95z 1 1.83z 0.91z  

(3.7)

 

The constant term represents the coefficient of the feedback path around the 

quantizer as described in [17]. The latter part of the transfer function represents the 

discrete-time equivalent of the continuous-time loop filter transfer function which has to 

be realized. The procedure to obtain the continuous-time loop filter transfer function and 

the corresponding loop filter coefficients is described next. 

 

3.3 DT-to-CT Transformation 

3.3.1 Impulse-invariant Transformation 

A DT ΔΣ modulator has a CT equivalent which can be obtained by performing a 

mapping from the z-domain to the s-domain. A DT ΔΣ modulator and its corresponding 

CT equivalent produce the identical sequences of output bits when the same inputs are 

applied to both modulators. This can be guaranteed if the inputs to their quantizers are 

the same at sampling instants [14], that is, 

 

 x n x t | TS x n  (3.8) 
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The open-loop structures of the DT and CT ΔΣ modulators obtained by opening 

the loop at the DAC input is shown in Figure 17. 

 

 

Figure 17. Open loop equivalence of DT and CT ΔΣ ADCs 

 

(3.8) is satisfied if the impulse responses of the two structures in Figure 17 are 

equal. This result can be expressed in the frequency domain as, 

 

 Z L z L HDAC s L s | TS (3.9) 

 

or in the time domain as, 

 

 l n hDAC n l t | TS (3.10) 

 

where HDAC(s) and hDAC(n) represent the s-domain transfer function and impulse 

response of the DAC, respectively. Since this transformation yields identical impulse 

responses in the DT and CT domains, it is called impulse-invariant transformation. 
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3.3.2 DAC Pulse Shapes 

It can be observed from HDAC(s) term in (3.9) that the loop transfer function 

depends on the type of DAC pulse shape. Hence, the NTF of a CT ΔΣ ADC is 

determined by the type of the DAC pulse shape and affects ADC performance. In a DT 

ΔΣ ADC, the feedback signal is applied by charging a capacitor to a reference voltage 

and discharging it onto an integrating capacitor in the loop filter. On the other hand, the 

feedback signal is continuously integrated over time in a CT ΔΣ ADC and hence, the 

ADC is sensitive to any deviation of the feedback signal from its ideal value [15].  Some 

commonly used DAC impulse responses and their Laplace transforms are illustrated in 

Figure 18. 

 

 

 

 
1,   0  0,   

1
 

 

 

 
1,   
0  ,   

1
 

 
⁄ ,   

 

0,   
 

1 ⁄

1  

Figure 18. Common DAC impulse responses and Laplace transforms 
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Rectangular-shaped DAC pulse shapes are easier to implement. However, they 

are more susceptible to timing errors such as clock-jitter. Several recently reported work 

use exponentially-shaped DAC feedback pulses to improve tolerance to clock-jitter.  

The continuous-time loop filter transfer function can be obtained from (3.7) by using the 

‘d2c’ command in MATLAB. For a NRZ DAC pulse shape, the continuous-time 

equivalent of (3.7) is given by, 

H s

2.3

1.3 10 s 2.5 10 s 2.1 10 s 9.5 10 s 4.1 10
s 2.1 10 s 1.7 10 s 4.6 10 s 3.8 10 s 1.3 10  

(3.11) 

The constant term represents the coefficient of the direct path around the 

quantizer. The second term in (3.11) represents the continuous-time loop filter transfer 

function.  
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H(s) provides a DC gain of 58dB and a minimum in-band gain of 43dB which 

are sufficient to suppress quantization noise and other non-idealities. The magnitude and 

phase response of H(s) are shown in Figure 19. 

 

3.4 CT ΔΣ ADC Architectures 

Stability in a higher order loop filter can be achieved by using either feedforward 

or feedback architecture as shown in Figure 20.  

 

 
Figure 20. CT ΔΣ ADC architectures 

 

In feedforward architecture, the input to the loop filter consists of primarily the 

quantization noise. Consequently, due to the lower internal signal swings, the first stage 

of the loop filter can have high gain and hence, noise and linearity requirements of the 

later stages can be relaxed resulting in a low power implementation. Additionally, only 

one feedback DAC is required which eases the complexity and area requirements. 



32 
 

However, the signal transfer function (STF) provides only 1st order attenuation for high 

frequency alias and also contains out-of-band peaking which reduces the stable input 

range of the modulator for adjacent channels. This loop filter architecture also requires a 

high speed summing stage which increases the power consumption significantly. 

In comparison, in feedback architecture, each integrator output has a significant 

amount of input signal. To avoid clipping, lower integrator coefficients have to be used 

which translates to larger capacitors. Hence, the first stage can have only a moderate 

gain which necessitates higher bias currents in the later stages to as to reduce their input-

referred noise and non-linearity contribution. This architecture required multiple 

feedback DACs to implement the loop filter, thereby increasing system complexity. 

However, an Nth-order filter implemented in feedback architecture provides Nth-order 

attenuation to high frequency blockers. 

In this work, feedforward architecture was chosen due to its low implementation 

complexity. 

 

3.5 Loop Filter Implementation 

A block diagram representation of the 5th-order continuous-time loop filter with 

feed-forward architecture is shown in Figure 21.  
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The 5th-order filter can be realized by cascading two biquadratic sections and a 

single first order lossy integrator stage. Multiple feed-forward paths are tapped from the 

outputs of each integrator stage, weighed and summed using a summing amplifier. The 

performance requirements of the loop filter are summarized in Table 4. 

 

Table 4. Performance requirements of the CT loop filter 

Block Order DC Gain 

dB 

Cut-off freq. 

MHz 

Q IM3 

dB 

SNR 

dB 

BIQUAD1 2 20 18.4 3 -78 74 

BIQUAD2 2 20 10.8 4 -60 60 

INTEG1 1 19 3.2 - -60 60 

Filter 5 59 20 - < -76 72 

 

 

The quality factors for the biquads are chosen to minimize sensitivity to 

saturation at internal nodes for step changes in the input signal and for practical 

realization. The gain in the first stage is chosen as a tradeoff between the requirement to 

suppress noise (thermal and flicker) and distortion of the subsequent stages. The first 

stage also has the maximum bandwidth in order to suppress thermal noise from the later 

stages. The overall input referred noise of the filter is designed to be dominated by the 

input resistance of the loop filter and the first integrator. The amplifiers in the loop filter 

also need to have minimum possible excess phase to minimize the excess loop delay. 

The first integrator stage is the most critical to the overall performance of the 

ADC since errors introduced at its input appear directly at the digital output of the 

modulator without any suppression and limit the overall resolution of the ADC. In order 

to satisfy noise and linearity specifications, the first op-amp has the largest power 

consumption in the entire filter. The summing amplifier is on the direct path around the 

quantizer and hence, is a critical component to loop stability and is also expected to 

consume large power. 
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The 5th-order noise-shaping loop filter is realized using active-RC integrators 

implementing two biquadratic sections with complex poles and a first order lossy 

integrator section implementing a low frequency pole. The Tow-Thomas biquadratic 

filter structure is used to realize each second order section as shown in Figure 22. The 

SIMULINK model used to emulate the second order section is also shown in Figure 23.  

 

 
Figure 22. Biquadratic section implementing complex NTF zero 
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Figure 23. SIMULINK block diagram of biquadratic section 
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The transfer functions from the input to the low-pass and band-pass outputs of 

the biquad are given as, 

 

 
HLP s

RF RIN⁄

1 sC RF RF
RQ

s C C RF RF
 (3.12) 

 
HBP s

sC RF RF RIN⁄

1 sC RF RF
RQ

s C C RF RF
 (3.13) 

 

The component values can be determined using the relationships given by, 

 

 
ω

1
RF RF C C  (3.14) 

 
Q

RQ
RF RF

C
C  (3.15) 

 ADC
RF
RIN

 (3.16) 

 

where ω0, Q and ADC are the resonant frequency, quality factor and DC gain of the 

biquad, respectively. Using (3.14)-(3.16), the component values used in the two biquads 

are calculated as shown in Table 5. 
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Table 5. Component values for the implementation of the biquads 

Component Parameter Biquad 1 

(ω0 = 18.4MHz, Q = 3) 

Biquad 2 

(ω0 = 10.8MHz, Q = 4) 

RIN 865.8Ω 1.46kΩ 

RF1, RF2 8.65kΩ 14.6kΩ 

RQ 25.9kΩ 58.6kΩ 

C1, C2 1pF 1pF 

 

 

The 1st-order section of the loop filter is implemented using a lossy integrator as 

shown in Figure 24. 

 

 
Figure 24. First order lossy integrator and SIMULINK model 

 

The transfer function to the output of the integrator is given by, 

 

 HLP s
RF
RIN

1
1 sRFC

 (3.17) 

 

The corner frequency (ω0) and DC gain (ADC) are given by, 
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 1
RFC

 (3.18) 

 ADC
RF
RIN

 (3.19) 

 

Using (3.18)-(3.19), the component values for the 1st-order section can be 

obtained as shown in Table 6. 

 

Table 6. Component values for the implementation of the 1st order lossy integrator 

Parameter Value 

RIN 5.47kΩ 

RF 48.7 kΩ 

C 1pF 

 

 

The SIMULINK model of the complete system consisting of the 5th-order 

continuous-time loop filter with feed-forward compensation paths, 9-level quantizer and 

DAC is shown in Figure 25. 
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3.6 Synthesis of Loop Filter Coefficients 

As described in Section (3.3), the CT equivalent of the DT loop filter can be 

calculated using equation (3.9) by assuming a specific DAC pulse shape. The method of 

impulse-invariant transformation can be applied to pulse shapes which have a simple 

frequency domain representation such as NRZ DAC pulse waveform. However, for 

more complex DAC pulse shapes such as SCR-DAC shown in Figure 18, manually 

manipulating the Laplace transforms is a tedious process. This method is even more 

substantially complex for higher order loop filters. For higher order loop filters, 

simulation-based design methodology proposed in [18] can be used. This method 

exploits the linear time-invariance property of the CT loop filter. The total output 

response of any LTI system is the sum of its natural and forced responses. From (3.11), 

the denominator of the loop filter transfer function determines the natural response of the 

filter. Impulse –invariant transformation can be used to obtain the CT equivalent from 

the DT transfer function. 

The numerator of the transfer function in (3.11) determines the forced response 

of the system. In case of a loop filter with feed-forward compensation, the summed 

output of multiple feed-forward paths contributes to the forced response of the system, 

which is different for various DAC pulse shapes. 

Figure 26 shows the SIMULINK model of the 5th-order CT loop filter for 

calculation of loop filter coefficients. 
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As shown in Figure 26, an nth-order path consists of n-integrators from the DAC 

input to the input of the quantizer. Let hn(k) represent the impulse response of the nth-

order path and dn represent the corresponding coefficient. Since the CT loop filter is an 

LTI system, the coefficients are independent of each other and the total impulse response 

of the system must be the equal to the linear combination of the impulse responses of 

each path, that is, 

 

 
h k d h k  (3.20) 

 

The impulse response hd(k) of the DT loop filter L(z) can be calculated from 

(3.20). Equating hd(k) and (3.20), a set of linear equations given by (3.21) can be 

constructed and solved to determine the loop filter coefficients dn. 

 

 
d h k h k , k 0,1,2,3,4,5 (3.21) 

 

Table 7 lists the feed-forward coefficients calculated using the simulation-based 

synthesis technique. 

 

Table 7. Feed-forward coefficients for the loop filter 

Coefficient Value 

d0 0.74 

d1 1.92 

d2 0.98 

d3 3.01 

d4 1.12 

d5 2.28 
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3.7 Verilog-A Modeling 

The entire system was modeled using Verilog-A HDL to facilitate rapid porting 

of system-level design from SIMULINK to Cadence Design environment. Op-amps with 

a DC gain of 50dB and closed-loop bandwidth of 1GHz were found to be adequate to 

achieve the overall ADC specifications. The full-scale input of the system is 200mV 

(peak). The component values for the loop filter have been derived in Section 3.5. The 

component values for the summing stage of the loop filter are listed in Table 8. The 

feedback DAC is implemented using a NRZ pulse shape with a full-scale output current 

of 231μA. However, the actual implementation uses an exponentially-shaped DAC pulse 

as described in Section 4. 

 

Table 8. Component values for the summing stage of the loop filter 

Parameter Value 

R1 6.75kΩ 

R2 2.61kΩ 

R3 5.11kΩ 

R4 1.66kΩ 

R5 4.46kΩ 

RF 5kΩ 

 

The schematic of the complete system is illustrated in Figure 27. 

 

 



 
 

 

 

 

 

 

 

Figure 27. Schematic of the CT ΔΣ modulator 
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3.8 Simulation Results 

The power spectral density of the proposed 5th-order ΔΣ ADC output is shown in Figure 

28. The input signal is a -3dBFS sine wave at 4.88MHz. The SQNR over the 20MHz 

signal bandwidth is 82dB. 
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Figure 28. Modulator output spectrum for a -3dBFS in-band signal at 4.88MHz
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4. CLOCK JITTER-TOLERANT HYBRID MULTI-BIT DAC 

 

4.1 Introduction 

Clock jitter causes the rising and falling edges of a clock signal to deviate from 

its ideal sampling instants. Timing errors in the clock cause an error in the sampling time 

and appears at the ADC output as a noise component. The power of these errors adds 

directly and raises the noise floor of the ADC output. Clock jitter limits ADC 

performance as the clock frequency is increased. This section discusses the effects of 

clock jitter in CT ΔΣ ADCs. A novel method is proposed to improve the clock jitter 

performance of the wideband ADC discussed in Section 3. 

 

4.1.1 Clock-jitter in CT ΔΣ ADCs 

The sources of jitter error in a typical CT ΔΣ modulator are shown in Figure 29. 

In a CT ΔΣ modulator, errors due to clock jitter can be modeled as error sources at the 

input of the quantizer and at the output of the feedback DAC.  

In a CT ΔΣ ADC, the signal is sampled at the output of the loop filter and hence, 

sampling errors are indistinguishable from quantization noise and undergo noise-

shaping. However, since the transfer function from the feedback DAC to the modulator 

output is same as the STF, jitter introduced into the system at the feedback DAC appears 

at the output without any noise-shaping and hence, degrades the SNR. The jitter noise 

power at the modulator output is dependent on the jitter variance and the magnitude of 

the DAC pulse at the clock transition. 

The relevant forms of jitter for a rectangular-shaped feedback DAC pulse are 

shown in Figure 30 [19]. The clock phase-noise causes each clock edge to deviate from 

its nominal position, resulting in both pulse-width (PW) and pulse-position (PP) 

variations, depending on the frequency of the phase noise. 
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Figure 29. Sources of jitter-induced errors in a CT ΔΣ modulator 

 

 
Figure 30. Clock-jitter errors for a rectangular feedback DAC pulse 

 

Pulse-width (PW) jitter causes a random variation in the amount of charge fed 

back per clock cycle resulting in a voltage error at the output of the first integrator stage. 

This error is not noise-shaped and hence, is the dominant source of performance 

degradation due to clock jitter. PW variations are caused due to the wideband phase 

noise of the clock generator which modulates the high power density regions of the DAC 

input outside the signal bandwidth, mainly quantization noise and out-of-band ADC 

input signals, to within the signal bandwidth, thereby raising the total in-band noise. 

Phase noise close to the clock frequency will be strongly correlated from one 

clock edge to another, thereby moving the position of a number of consecutive clock 

edges in the same direction with respect to the ideal sampling instants resulting in pulse 

position (PP) jitter. PP jitter results in a random variation in the integration interval of a 
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constant amount of charge. It was shown in [20] that the amplitude errors in the loop-

filter caused by PP errors are at least 1st order noise-shaped. 

 

4.1.2 SNR Limitation due to Pulse-width Jitter 

The jitter noise power at the output of the modulator is dependent on the shape of 

the feedback DAC current waveform. Figure 31 depicts the pulse width jitter in a 

continuous-time modulator with switched-current (SI) and switched-capacitor (SC) 

DACs. In the SC-DAC, the variation of the amount of charge that is transferred per 

clock cycle due to the variation in timing is relatively low. However, in the SI-DAC 

case, this amount of charge varies linearly with the variation in timing. Consequently, 

the SI-DAC is more sensitive to clock jitter than the SC-DAC. 

 

 

Figure 31. Pulse-width jitter error in SI and SC DACs 

 

The SJNR in a CT ΔΣ ADC with SI-DAC and -3dBFS maximum input signal 

amplitude is given by [21], 

 

 
SJNRSI 10 log

δ · OSR
4 · F · σ  (4.1) 

 

where δ is the non-return-to-zero interval such that the return-to-zero interval is given as 

RZ = 1-δ, OSR is the oversampling ratio, Fs is the sampling frequency, σ2
s is the 

 



49 
 

variance of the clock jitter. For a NRZ-DAC, the SJNR can be calculated by setting δ = 1 

in (4.1). For a RZ-DAC, δ < 1 in (4.1) means that the SJNR for a RZ-DAC is lesser than 

that for a NRZ-DAC. 

The SJNR in a CT ΔΣ ADC with SC-DAC and -3dBFS maximum input signal 

amplitude is given by, 

 

 
SJNRSC 10 log

δ · OSR
4 · F · σ

e · 1
δ · α  (4.2) 

 

where α is defined as, 

 

 α
T
τ  (4.3) 

 

which gives the number of settling time constants τ = RC relative to Ts. 

With constant OSR, time jitter, sample frequency and RTZ (return-to-zero) 

interval, the improvement from a switched current to SC feedback DAC is given by, 

 

 
ΔSJNR SJNRSC SJNRSI 20 log

eδ·α 1
δ · α  (4.4) 

 

 (4.4) shows that the SJNR improvement is only dependent on the product of δ 

and α, which gives the effective settling of the DAC. Also, when τ << Ts, α→∞ and the 

SC current settles completely before the end of the clock cycle. Since PW jitter is 

completely eliminated in this case, an infinite improvement in SJNR is achieved. 

Since the integrated feedback charge are equal for the SI and SC DACs, the peak 

feedback current for an SC DAC is significantly higher which imposes large slew rate 

and gain-bandwidth requirements on the op-amp used in the first integrator stage.  
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In this work, a hybrid multi-bit DAC is proposed which combines the advantages 

of clock jitter tolerance offered by SC-DACs and the relaxed slew rate and speed 

requirements of the SI-DACs. 

 

4.2 Previous Work on Clock-jitter Tolerant CT ΔΣ ADCs 

Several different techniques have been reported in literature to reduce the clock-

jitter sensitivity in CT ΔΣ ADCs. A low power modulator with single-bit SC-DACs has 

been designed in [19], however, the input signal bandwidth is in the kHz range. A 

single-bit SC DAC for a GSM/UMTS receiver with up to 3.84MHz bandwidth and 

4.5mW power consumption has been designed in [21]. However, the proposed technique 

is not suitable for a low OSR and wide-bandwidth CT ΔΣADC due to large power 

requirements in the loop filter. A 20MHz bandwidth CT band-pass modulator with 4-bit 

SC-DAC has been reported in [22], however, the power consumption exceeds 50mW. A 

switched-shaped-current (SSI) DAC has been proposed in [23] where the DAC pulse 

shape is similar to a SI-DAC during initial part of the clock cycle and exponentially 

decaying towards the end of the clock cycle, realized using capacitor discharge through a 

biased transistor. However, the method requires good control over process parameters 

for successful circuit implementation. A switched-capacitor-switched-resistor (SCSR) 

has been implemented in [24] at the expense of significant complexity and power 

consumption in the control circuits necessitating extensive tuning. 

In addition to these techniques, system-level ideas have also been proposed in 

[25-26] to improve clock-jitter tolerance in CT ΔΣ modulators. A technique to filter out 

high frequency jitter noise in the feedback signals using FIR-DACs is proposed in [25]. 

However, these extra blocks add excess loop delay and increase the implementation 

complexity for a multi-bit DAC structure. An interesting approach to significantly 

reduce clock-jitter error is proposed in [26] where fixed-width pulses generated using 

digital logic is applied to the DAC. However, the effect of phase noise contribution from 

the digital logic needs to be investigated further. 
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4.3 Proposed Clock-jitter Tolerant Hybrid Scheme 

4.3.1 Hybrid DAC Pulse Shape 

As explained in Section 4.2, the SI-DAC implementation results in reduced peak 

feedback currents and relaxes the slew rate requirements on the amplifier used in the 

first integrator stage, with the optimal case being for a NRZ-DAC. On the other hand, 

SC-DAC imposes stringent design requirements on the amplifiers, however, offers 

excellent jitter performance. Hence, it can be concluded that with a hybrid (HYB) DAC 

pulse shape, it is possible to achieve the advantages of both SI-DACs and SC-DACs by 

shaping the feedback DAC pulse to behave as an NRZ-DAC for a portion of the clock 

period and as an SC-DAC for the remainder of the cycle. Figure 32 compares the pulse 

shapes for NRZ, SC and HYB DACs. 

 

 
Figure 32. NRZ, SC and HYB DAC pulse shapes 

 

The total feedback charge for an NRZ-DAC pulse is given by, 

 

 QNRZ INRZ · TS (4.5) 

 

For a SC-DAC, the total feedback charge can be similarly calculated by 

integrating the current waveform from αTs to Ts, 

 

 
QSC ISC · e T ⁄ · dt

T

T
ISC · τ · 1 e T ⁄  (4.6) 
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where τ = RC is the discharge time constant. 

Similarly, for the proposed HYB-DAC, the total feedback charge can be 

calculated as, 

 

 
QHYB IHYB · dt

T
IHYB · e T ⁄ · dt

T

T

IHYB αT τ · 1 e T ⁄  

(4.7) 

 

To assure the same gain from the input to the output of the modulator for various 

possible implementations of the feedback DAC, the integrated feedback charge must be 

identical, that is, 

 

 QNRZ QSC QHYB (4.8) 

 

Hence, the ratio of the peak SC and HYB current to the NRZ current can be obtained as, 

 

 ISC
INRZ

TS
τ · 1 e T ⁄  (4.9) 

 

 IHYB
INRZ

TS
αTS τ · 1 e T ⁄  (4.10) 

 

Assuming α = 0.5 and τ = 0.1Ts, (4.9)-(4.10) can be calculated as, 

 

 ISC
INRZ

10.07 (4.11) 

 

 IHYB
INRZ

1.67 (4.12) 
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It is apparent that from (4.9)-(4.10) that the peak HYB current is approximately 6 

times smaller than the peak SC current. Moreover, the peak HYB current is only 1.6 

times the peak NRZ current resulting in moderately higher slew rate and speed 

requirements on the amplifiers. 

 

4.4 System-level Modeling of the HYB-DAC With Clock-jitter 

The simplest method to characterize the clock-jitter performance of a CT ΔΣ 

ADC is to replace the ideal clock by a jittered clock with the required rms timing jitter. 

However, this method increases the simulation time drastically. An alternate and fast 

approach has been proposed in [27] where the jitter error is modeled as an error in the 

feedback charge injected by the DAC. For the HYB-DAC the error charge can be 

modeled changing the signal amplitude by a constant amount over the fixed window at 

the end of a clock period. The required change in signal amplitude is given by, 

 

 
e ,HYB n y t | T ·

∆t n
TS

 (4.13) 

 

where y(t) is the DAC output signal. 

The MATLAB model of the active-RC, 5th-order feed-forward CT ΔΣ ADC with 

the proposed clock-jitter tolerant HYB-DAC is shown in Figure 33. The HYB-DAC is 

modeled using pulse generators and a first order s-domain transfer function where ‘tau’ 

is the discharge time constant. The model was simulated for different amounts of clock-

jitter and the corresponding SNR of the modulator output was calculated.  
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Figure 34 compares the output spectra without clock-jitter and with 1% clock 

jitter. Figure 35 compares SNR vs % jitter for NRZ and HYB DACs. It can be observed 

that in case of HYB-DAC, there is only a marginal SNR degradation for up to 1% clock-

jitter. 

 

4.5 Circuit-level Implementation 

4.5.1 DAC Architecture 

The proposed multi-bit hybrid DAC with nine output levels is illustrated in 

Figure 36. Capacitors C1, C2, C3 are binary-weighted in order to implement seven of the 

output levels of the DAC. The unit-weighted capacitor C4 realizes the additional two 

levels of the DAC.  

 

 
Figure 36. Multi-bit hybrid DAC architecture with one capacitor bank 
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As highlighted in Figure 36, NMOS and PMOS transistors are used to realize the 

fully-differential DAC current pulses since those switches operate as current sources for 

a portion of each discharge cycle. In traditional switched-capacitor circuits, half the 

clock cycle is used for charging the capacitors while the remaining half clock cycle is 

used for discharging the capacitors.  

In order to reduce the peak currents of the switched capacitor pulse shape, it is 

desirable to increase the discharge time up to the entire clock cycle. Such a modification 

implies that multiple capacitor banks need to be used for the correct operation of the 

DAC. Using multiple capacitor banks provides an added advantage of randomizing the 

mismatches inherent in multi-bit digital-to-analog conversion. Hence, the proposed 

HYB-DAC scheme offers inherent dynamic element matching (DEM) that improves 

overall DAC linearity. DEM is discussed in detail in Section 5 where another multi-bit 

DAC design for a wideband CT ΔΣ modulator is discussed.  

A DAC controller circuit ensures that only one bank of capacitors is selected 

during a given clock cycle. Capacitor banks are charged to the reference voltage when 

not selected by the controller.  

The DAC coefficient is implemented by connecting the binary weighted 

capacitors to the inverting or non-inverting terminal of the op-amp to implement the 

relationship given by, 

 

 
V nT V nT T A VREF (4.14) 

 

where A1i (= ±Ci/C) is the digital DAC input and RF is large. When enabled by the DAC 

controller, the DAC capacitors are either coupled or cross-coupled to the first integrator 

depending on the binary data from the encoder. 

The design of the switch highlighted in Figure 35 is now discussed. The 

proposed Hybrid DAC operation is obtained by strategically modifying the control 

signal to the Φ2N switch. The basic principle of operation is depicted in Figure 37.  
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Figure 37. Hybrid DAC pulse shape generation 

 

 
Figure 38. Operation of the hybrid DAC switch 

 

 



59 
 

The right hand side plate of C1 is connected to the virtual ground of the op-amp 

corresponding to the first stage of the loop filter. The main concept is to maintain the 

operation of the transistor in saturation region (operating as a current source) while 

discharging the capacitor. For that reason, the gate of this transistor is switched between 

GND and VGSN. 

When Φ2N goes high, the transistor is turned on and the capacitor starts 

discharging. As shown in Figure 38, for the time when the overdrive voltage of the 

NMOS transistor VDSAT = ( VGSN-Vt ) is less than VREF, the transistor operates in the 

saturation region and hence, behaves as a current-mode circuit, thereby limiting the peak 

current and discharging the capacitor linearly. This operation resembles the operation of 

the SI-DAC discussed earlier. When the capacitor voltage decays below VDSAT of the 

Φ2N transistor, it operates in the triode region and operates as a resistor. Thus, the current 

now discharges the capacitor C1 exponentially. This scheme results in significantly 

lower peak currents than the traditional switched-capacitor DACs while also providing 

excellent jitter performance. Hence, this hybrid DAC combines the low jitter 

performance of Switched capacitor (SC) and lower peak current of non-return-to-zero 

(NRZ) DACs. 

 

4.5.2 Design Considerations 

The proposed CT ΔΣ ADC is implemented in a 1.2V, 90nm CMOS process. In a 

nanometric technology, severe channel length modulation and short channel effects 

degrade the output impedance of the native device. The proposed HYB-DAC scheme 

relies on the high output impedance of the switch transistor when operating as a current 

source and the triode region switch resistance to generate the exponentially decaying 

portion of the feedback DAC current. Hence, these switches must be designed 

appropriately. In order to reduce channel length modulation effects, a large length L is 

chosen for the transistor used to implement the hybrid switch. However, increasing the 

length of the transistor also increases its triode region resistance which may cause the 

feedback DAC current to not settle completely by the end of the discharge cycle, thereby 
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increasing the jitter noise power. Additionally, a larger L also increases the gate-source 

capacitance which would require larger power dissipation in the driver circuit. From 

simulations, a length of 0.5µm for the hybrid switch was found to be a good trade-off 

between the aforementioned issues. 

The width of the transistor used in the hybrid switch can be determined using a 

setup consisting of a single transistor and the unit capacitor of the DAC with initial 

conditions of VREF = 575mV across its plates. Using a fixed length of 0.5µm and a fixed 

gate-source voltage, the width of the transistor is swept and to generate the set of plots 

shown in Figure 39. A similar setup is used to determine the optimum dimensions of the 

PMOS transistor used to implement the hybrid switch, as shown in Figure 40.  

 

 
Figure 39. Determination of dimensions for the NMOS hybrid-switch 
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Figure 40. Determination of dimensions for the PMOS hybrid-switch 

 

 

 

Table 9. Dimensions of NMOS and PMOS hybrid switches 

Hybrid-switch type W / L 

NMOS 12um / 0.5um 

PMOS 48um / 0.5um 
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Table 10. Multi-bit hybrid DAC design parameters 

Parameter Value 

C1, C4 125fF 

C2 250fF 

C3 500fF 

Vcm 600mV 

VREF+ Vcm + 575mV 

VREF- Vcm - 575mV 

 

Since the sampling frequency is 400MHz, it is desirable to discharge most of the 

capacitor voltage by the end of a clock cycle, that is, at 2.5ns. The dimensions of the 

NMOS and PMOS transistors used to implement the hybrid switches are listed in Table 

9. The design parameters of the multi-bit hybrid DAC are summarized in Table 10. 

 

4.6 Simulation Results 

The proposed clock-jitter-tolerant multi-bit hybrid DAC was used to implement 

the 9-level feedback DAC for the active-RC, 5th-order feed-forward compensation CT 

ΔΣ ADC discussed in Section 3. Figure 41 shows the schematic of the complete system. 

Since the feedback DAC should not inject any charge when its input is mid-rail, 

additional digital logic has been used in the feedback path. The full-scale input of the 

system is 200mV (peak).  

 



 
 

 

 

 

 

Figure 41. Schematic of the proposed clock-jitter tolerant 5th-order CT ΔΣ ADC 
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The component values for the loop filter have been derived in Section 3.5. The 

component values for the summing stage of the loop filter are listed in Table 11. 

 

Table 11. Component values for the summing stage of the loop filter 

Parameter Value 

R1 6.75kΩ 

R2 2.61kΩ 

R3 5.11kΩ 

R4 1.66kΩ 

R5 4.46kΩ 

RF 5kΩ 

 

 

Figure 42 illustrates the peak currents for various implementations of the 

feedback DAC. The results match closely with the theoretical analysis in Section 4.3. It 

is to be noted that to allow a fair comparison, the SC-DAC also has a discharge cycle 

equal to one complete clock period, although in conventional SC circuits, the discharge 

time is equal to half a clock cycle.  

The SNR vs % clock jitter performance is characterized in Figure 43. It can be 

observed from Figure 43 that the proposed HYB-DAC improves the SNR by 

approximately 25dB when compared to NRZ-DAC for clock jitter up to 5ps (rms). The 

linearity of the HYB-DAC depends on the mismatches between the DAC capacitors. 

However, the use of multiple capacitor banks provides an inherent randomization. 

Moreover, capacitors can be matched to less than 0.05% (greater than 11 bits) through 

proper sizing and layout techniques. 
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A plot of signal to noise ratio (SNR) and the signal to noise-plus-distortion ratio 

(SNDR) for various input signal amplitudes is shown in Figure 44. The proposed CT ΔΣ 

ADC performance is summarized in Table 12. 

 

 
-70 -60 -50 -40 -30 -20 -10 0

0

10

20

30

40

50

60

70

80

Input amplitude (dBFS)

SN
R

 (d
B

)
SQNR vs Input amplitude

Peak SQNR = 78dB

Figure 44. SNR vs. input amplitude for the CT ΔΣ ADC 
 

 

Table 12. Performance summary of the proposed CT ΔΣ ADC 

Parameter Value 

Sampling Frequency 400MHz 

Bandwidth 20MHz 

Peak SNDR 74dB 

THD < -76dB 

Dynamic Range 73dB 

Power < 20mW 

Technology 1.2V, 90nm 
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5. MULTI-BIT DAC DESIGN FOR A 11-BIT, 100MHz CT ΔΣ ADC 

 

High resolution and wide bandwidth ΔΣ ADCs are implemented at low 

oversampling ratios to avoid achieve lower power consumption. Consequently, high 

resolution is obtained by using multi-bit quantizers and DACs. However, multi-bit 

DACs are inherently non-linear due to device mismatch and PVT variations. This 

section discusses the design of a highly linear, 3-bit digital-to-analog converter for a 5th-

order CT ΔΣ modulator with 11 bits resolution, 100MHz bandwidth and 2GHz sampling 

frequency in a 1.8V, 0.18µm BiCMOS process.  

 

5.1 Effect of DAC Non-linearity in CT ΔΣ ADCs 

The general block diagram of a CT ΔΣ modulator with a non-linear DAC in the 

feedback path is shown in Figure 45. 

 

 
 

Figure 45. DAC non-linearity effects in CT ΔΣ ADCs 

 

Due to the feedback action of the loop and large in-band loop gain in the loop 

filter, the error signal, which is the difference between the input signal and the DAC 

output, is close to zero for in-band signals. Since the DAC is non-linear, the output of the 

modulator is non-linearly related to the input signal within the signal band. Hence, DAC 

non-linearity directly appears as in-band non-linearity of the overall modulator, thereby 
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degrading the signal-to-noise-plus-distortion ratio of the overall modulator. Thus, even a 

low resolution feedback DAC requires linearity better than the overall modulator.  

Dynamic element matching (DEM) and calibration are popular linearization 

techniques to reduce the effects of DAC nonlinearity. In DEM, different DAC elements 

are used for the same modulator output code in a random manner based on some 

algorithm which results in mismatch errors being averaged over time. Individual level 

averaging (ILA) [27], data weighted averaging (DWA) [28], and butterfly scrambler [29] 

are some of the commonly used DEM techniques. Traditionally, circuits for performing 

DEM typically appeared within the feedback path, thereby adding excess loop delay and 

degrading the stability. In order to avoid this effect, DEM circuitry has been 

implemented external to the feedback path in recently reported work in literature [1-5]. 

Calibration circuits used for the linearization of multi-bit DACs typically require 

an accurate reference to which all the DAC elements are calibrated. Calibration methods 

are very effective and linearity of up to 14 bits has been reported by using calibration 

[30-31].  

 

5.2 System-level Specifications 

The system-level architecture of the proposed 5th-order CT ΔΣ is shown in Figure 

46. The 5th-order loop filter consists of transconductance amplifiers with passive LC 

sections. A 9-level quantizer is used and 5 feedback DACs implement the loop filter in 

feedback architecture. 

 



 
 

 

 

 

 

Figure 46. System-level block diagram of the CT ΔΣ modulator 
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The target specifications of the ADC are listed in Table 13. 

 

Table 13. System-level specifications of the CT ΔΣ ADC 

Parameter Specification 
SNDR 72 dB – 78 dB 

Signal Bandwidth 100MHz 
Power < 0.5W 

Quantizer resolution 9 levels 
Sampling Frequency 2GHz 

Supply Voltage 1.8V 
 

 

In order to adjust the loop coefficients for excess loop delay, a direct feedback 

path is implemented around the quantizer using DAC6. The use of this fast path requires 

that the feedback signals from the DACs be ready exactly one period after the sampling 

instant at the quantizer, that is Ts = 500ps.  Assuming that the quantizer data is already 

available at Ts/2 = 250ps, the DAC has 250ps to generate the feedback signals. Current 

mode DACs were chosen due to the inherent high speed operation and also due to the 

fact that the input to the ADC is a current signal. Among these feedback DACs, multi-bit 

DACs 1 and 2 (and to a certain extent DAC3) are the dominant contributors of non-

linearity. Typically, either Dynamic Element Matching (DEM) or Self-Calibration 

techniques are employed inside the feedback path of the ADC. The conventional method 

is to place these blocks inside the feedback path between the quantizer and the DACs. 

However, any extra block in the feedback path will add additional delay. 

This work discusses DEM and Self-calibration techniques for designing multi-bit 

DACs in high speed delta-sigma ADCs. The linearization techniques have been 

implemented for DAC1 since its linearity is most critical to the overall resolution of the 

modulator. 
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5.3 Multi-bit DAC Architecture with DEM and Self-calibration 

The proposed architecture for the Multi-bit DAC is as shown in Figure 47. 

Dynamic element matching is done by the shifter and PN-sequence generator blocks. 

The DEM scheme is explained in detail in Section 5.3.1. The 9-level DAC can be 

implemented using 8 current cells. However, in order to incorporate continuous 

background calibration, an extra dummy current cell is implemented so that the dummy 

current cell replaces the current cell that is being calibrated. The outputs of the shifter 

are applied to a set of 1-to-2 demultiplexers which are controlled by a 9-bit ring counter 

operating at the calibration clock frequency. As shown in Figure 47, when CALi = ’1’, 

current cell i is under calibration and the corresponding output Souti, i = 0, 1,…,7 of the 

shifter is routed to the dummy current cell. The outputs of the DEMUX logic are applied 

to a synchronization block consisting of D-flip flops. The design of the synchronization 

circuits is discussed in Section 5.3.2. The calibration methodology and design details are 

explained in Section 5.3.3. 

 

 

Figure 47. Proposed 3-bit DAC architecture with DEM and self-calibration 
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5.3.1 Dynamic Element Matching 

Figure 48 shows the DEM scheme and its operation in greater detail. The main 

design consideration was to minimize the circuitry between the quantizer and the DAC 

inputs in order to obtain maximum operational speed and minimum excess loop delay. 

 

 
Figure 48. Implementation of high speed DEM scheme 

 

The DEM is accomplished by a Shifter and a PN-Sequence Generator. The 

shifter performs a rotate-right shift on its inputs. The PN-generator indicates to the 

shifter the number of bits by which the shifter has to rotate its inputs. In order to 

maximize the effectiveness of the DEM block, the data from the quantizer (which is 

available at Ts/2 = 250ps) has to be shifted during each clock, that is, at FCLK-DEM = 

2GHz. Hence, the PN-sequence generator also has to provide the Shift signals at 2GHz 

with the signals being ready at Ts/2 = 250ps within each clock period. 

 

5.3.1.1 Shifter 

The shift logic is implemented using an 8-bit funnel shifter. The operation of the 

funnel shifter can be explained by a 4-bit funnel shifter example as shown in Figure 49. 

Z0-Z3 represent the input lines while the lines S0-S3 indicate the amount of shift and 

Sout0-Sout3 are the output lines. For correct operation of the shifter, only one of S0-S3 lines 
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is logic ‘1’ at any given instant. For example, if Sout2 = 1, the corresponding NMOS 

switches are ON and, Z0 = Qout0, Z1 = Qout1, Z2 = Qout2, Z3 = Qout3, Z4 = Qout0, Z5 = Qout1, 

Z6 = Qout2 which means that, Sout0 = Z2 = Qout2, Sout1 = Z3 = Qout3, Sout2 = Z4 = Qout0, Sout3 = 

Z5 = Qout1. Hence the input data {Qout3, Qout2, Qout1, Qout0} has been shifted right by 2 

positions to {Qout1, Qout0, Qout3, Qout2}. 

 

 
Figure 49. 4-bit funnel shifter example with shift-right configuration 

 

The schematic of the 8-bit funnel shifter is shown in Figure 50. The operation of 

an 8-bit funnel shifter is similar. In the actual implementation, transmission gates are 

used as the switches to ensure that both high and low logic levels from the quantizer 

outputs are switched to output without degradation in the voltage levels. However, if the 

quantizer output signals are generated using current-mode logic (CML), then this 

requirement can be relaxed. An important design consideration is the sizing of the 

switches used in the funnel shifter. If the switch size is increased, the delay from the 

inputs to the outputs of the shifter decreases. However, this also increases the load on the 

Shift signals from the PN-generator. 
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Figure 50. 8-bit funnel shifter implementation 

 

From simulation, the delay through the shifter block was found to be 

approximately 60ps. 

 

5.3.1.2 PN-sequence Generator 

The PN-sequence generator generates a maximal-length sequence based on the 

3rd order primitive polynomial given as, 

 

 1 (5.1) 
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The block diagram representation of (5.1) is shown in Figure 51. 

 

 
Figure 51. PN-sequence generator block diagram 

 

The polynomial in (5.1) generates the states 1, 4, 6, 7, 3, 5, 2, 1…, etc. Hence, 

the PN-sequence generator has to output a logic ‘1’ on its output lines in the order Shift1, 

Shift4, Shift6, Shift7, Shift5, Shift2, Shift1, …, etc. A direct circuit-level implementation of 

Figure 50 can be done using flip-flops to implement the delay elements, an XOR gate to 

implement the addition operation and a 3-to-8-decoder to map the output to a 1-out-of-8 

code. However, the resulting implementation was found to be slow and not suitable to be 

operated at 2GHz. A simple and straightforward implementation would be to use a 7-bit 

Ring Counter with the Shift signals tapped in the order in which the PN-sequence states 

are generated. 

In the actual implementation, an 8-bit Ring Counter has been used to incorporate 

the Shift0 state, that is, if Shift0 = logic ‘1’, no shifting operation is performed on the 

input signals which means that DEM operation is disabled. The circuit diagram of the 

PN-sequence generator is as shown in Figure 52.  



 
 

 

 

 

 

 

Figure 52. Implementation of the PN-sequence generator 
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Table 14 lists the different states of the PN-sequence generator. 

 

Table 14. PN-sequence generator  truth table 

Shift 

S7 S6 S5 S4 S3 S2 S1 S0 

0 0 0 0 0 0 0 1 

0 0 0 0 0 0 1 0 

0 0 0 1 0 0 0 0 

0 1 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 

0 0 1 0 0 0 0 0 

0 0 0 0 0 1 0 0 

 

 

The PN-sequence generator should provide rail-to-rail signals for switching the 

transmission gates in the shifter. It was found that a 2GHz CMOS ring counter in 

0.18um cannot satisfy the requirements for this design. Hence, CML logic is used to 

implement the ring counter and a CML-to-CMOS converter is used at the outputs to 

generate the desired rail-to-rail Shift signals. The schematic of the CML-to-CMOS 

converter is shown in Figure 53. The component values for the CML-to-CMOS 

converter are listed in Table 15. 
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Figure 53. CML-to-CMOS converter schematic 

 

Table 15. Component values for CML-to-CMOS converter 

Device Dimensions 

M1 5µm/0.18µm 

M2 2*(5µm/0.18µm) 

M3 4*(5µm/0.18µm) 

Q1  WE = 0.2µm, LE = 0.76µm, m = 2 

Ib 300µA 

 

From simulations, the total delay through the DEM scheme was found to be 

approximately 160ps. This value is below the total feedback path delay requirement of 

250ps as explained in Section 5.2. The remaining available time is required to meet the 

setup time requirements of the D-Flip-flops used in the synchronization circuits as 

explained in the next section. 

 

5.3.2 Synchronization Circuit 

All the current cells in the 9-level DAC have to generate the currents 

simultaneously in response to the input signals. Any mismatch in the timing of the 

signals driving the current-steering switches will give rise to non-linearity at the DAC 
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outputs. Hence, the outputs of the shifter are retimed using a set of CML D-Flip-flops. 

Low-voltage triple-tail architecture is used to implement the DFFs as shown in Figure 54 

[31]. The component values for the DFF are listed in Table 16. 

 

Table 16. Component values for D-flip-flop 

Device Dimensions 

M1 4*(8µm/0.18µm) 

Q1  WE = 0.2µm, LE = 0.76µm, m = 1 

Q2  WE = 0.2µm, LE = 10.16µm, m = 4 

Ib 800µA 

 

 

The low-voltage triple-tail latch architecture shown in Figure 54 has smaller 

propagation delay than conventional CML latch architectures due to the lesser number of 

stacked levels of transistors. However, base current leakage and glitches in the outputs 

are some of the disadvantages of this architecture. Base current leakage can be reduced 

by sizing up the CLK transistors, but this will increase the clock load. Glitches can be 

reduced by using low-swing clocks with high crossing point.  



 
 

 

 

 

 
Figure 54. Schematic of the triple-tail high speed D-flip-flop 
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5.3.3 Self-calibration 

The current cells can be closely matched to a desired value by calibrating each 

current cell with a precise reference current source. The principle of current calibration 

is illustrated in Figure 55. When the cell is being calibrated, switch SCAL is closed and 

Sout is open, and the reference current flows into the two transistors M1 and M2. Since M2 

is connected as an MOS diode, its gate-to-source voltage adapts so that the drain current 

of M2 equals the difference between Iref and IM1. When the calibration is completed, SCAL 

is open and Sout is closed, and the current cell can be used as a normal current-steering 

cell. Since Vgs2 remains stored on the gate-to-source capacitance of M2, the sum of the 

currents of M1 and M2 remains equal to Iref. 

The calibration loop for an individual current cell is as shown in Figure 56. The 

calibration loop consists of two parts: the Calibration Reference which is shared by all 

current cells, and Current Source that is being calibrated. A super buffer is used in the 

calibration reference to precisely set the desired drain voltage on M6. Ideally, this 

voltage has to be set equal to the common mode output voltage on the current steering 

switches M4 and M5.  

Each current source is split into two parts; a Coarse Current Source M1 carrying 

97% of the reference current Iref, and a Fine Current Source M2. When CAL = ‘1’, M4 

and M5 are disabled, M6-M8 are ON and Iref flows into the current source, charging up 

the gate-to-source capacitance Cgs of the fine current source M2. When the calibration is 

complete, CAL = ‘0’ and M6-M8 are switched OFF. Dummy switches M9-M12 are used 

to minimize the effects of charge injection.  

 



82 
 

 
Figure 55. Current calibration principle 

 

 

 

Figure 56. Schematic of the automatic background self-calibration technique 
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The time required for calibrating each current cell is approximately 40ns. Hence, 

the calibration signals are generated by a 25MHz clock. The component values for the 

self-calibrated current cell and calibration reference are listed in Table 17. 

 

Table 17. Component values for self-calibrated current cell and reference 

Device Dimensions 

M1 16µm/2µm 

M2 24.8µm/0.18µm 

M3 4*(6µm/0.18µm) 

M4 5µm/0.18µm 

M5 2.6µm/0.18µm 

M6 4µm/0.18µm 

M7 4*(3µm/0.18µm) 

M8 10*(9µm/0.18µm) 

Q1  WE = 0.2µm, LE = 0.76µm, m = 1 

Ib 610µA 

Ibias 100µA 

Imain 745µA 

Vref 600mV 

 

 

5.4 Current Cell Design 

5.4.1 Matching Considerations for Current Source Transistors 

Random error sources influence the static cell current and are caused by the 

random variations inherently present in a CMOS manufacturing process. Several 

mechanisms contribute to this random mismatch which can be reduced by increasing the 

area of the matched transistors [32]. The relationship between area and current mismatch 

is described by, 
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where Id is the drain current, Aβ and AVt are technology parameters provided by the 

foundry, σΔId
2 is the variance of the current source mismatch. Using (5.2), the required 

active area for sufficient matching can be calculated.  

The dimensions of the current source transistors for a given technology and 

overdrive voltage are given by, 
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A higher overdrive voltage would provide better area efficiency at the expense of 

reduced swing at the output. A larger area results in greater parasitic capacitances which 

limit the speed of operation. Hence, there exists a trade-off between overdrive voltage 

and speed of operation. Table 18 lists the total areas and dimensions of the current cells 

for all DACs designed for the proposed system. 
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Table 18. Dimensions and total area for different feedback DACs 

DACi Unit current (W/L),  m=4 Total area, μm2 

DAC1-coarse 610uA 203μ/3.84μ 7795 

DAC1-fine 35uA 48μ/16μ 7680 

DAC2 1.55mA 323μ/2.4μ 6976 

DAC3 960uA 255μ/3μ 6885 

DAC4 790uA 231μ/3.36μ 6985 

 

5.4.2 Output Impedance of Current Cell 

The output impedance of each current cell should be sufficient to achieve the 

desired linearity across the entire Nyquist range. The impedance Zimp seen in the drain of 

the switch transistors of each current cell has to be made large so that its influence on the 

INL specification of the D/A converter is negligible. The relationship between Zimp and 

the achievable INL specification is given by [32], 

 

 
INL

I RLN
4Z  (5.5) 

 

where Iunit is the LSB current, RL is the load resistance, N is the number of current cells. 

The relation between the SFDR specification and the corresponding output 

impedance requirement is expressed as [32], 

 

 
SFDR 20 log

4Z
NRL

 (5.6) 

 

For the DAC1 current cell, RL=25Ω with a linearity requirement of 12 bits. 

Using (5.5)-(5.6), Zimp = 31kΩ and Zreq = 225kΩ.  
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The cascode configuration of the switch and current source has sufficiently high 

impedance greater than 700kΩ over the 100MHz signal bandwidth to achieve the 

linearity specifications. 

 

5.5 Simulation Results 

The complete system was simulated with the transistor-level implementation of 

the proposed linearization schemes and feedback DACs, and Verilog-A implementation 

of the filter and 9-level quantizer blocks. The full-scale input of the system is 200mV 

(peak). The modulator output spectrum for various configurations of the system is shown 

in Figure 57.  
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Table 19 lists the peak SNR at the output of the modulator for different 

configurations of the system.  

 

Table 19. Performance summary of the proposed linearization schemes 

Mismatch DEM Self-calibration SNR (dB) 

N N N 73.8 

Y N N 55 

Y Y N 63.6 

Y N Y 70 

Y Y Y 72.7 
                         Y-Yes, N-No 

 

The unit current sources were designed for 1% mismatch. It can be observed that 

with only the DEM scheme activated, the SNR of the system improves by approximately 

8dB. With only the calibration scheme activated, the SNR of the system improves by 

15dB. With both DEM and self-calibration schemes activated, the SNR of the system is 

only almost equal to the ideal SNR with no mismatch. Hence, a 3-bit DAC with 12-bit 

linearity with 100MHz bandwidth and operating at 2GHz clock frequency has been 

designed. 
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6. CONCLUSIONS 

 

System-level and circuit-level design considerations for high resolution, wide 

bandwidth continuous-time delta-sigma ADCs were presented in this work. A detailed 

and systematic design procedure for a 12-bit, 20MHz bandwidth continuous-time delta-

sigma ADC was demonstrated. Methods for optimum selection of design variables in the 

parameter space and choice of loop filter architecture were explained. MATLAB and 

Cadence simulation results were also presented for the proposed delta-sigma modulator. 

The problem of clock jitter in continuous-time delta-sigma ADCs was explained. 

A novel hybrid DAC pulse-shaping technique was proposed to improve clock jitter 

tolerance of the 12-bit, 20MHz bandwidth continuous-time delta-sigma ADC prototype. 

Theoretical analysis was performed to demonstrate the benefits of relaxed op-amp 

requirements offered by the proposed technique. A detailed design procedure for the 

circuit-level implementation of the 3-bit hybrid DAC in 90nm, 1.2V CMOS technology 

was presented. Simulation results of the circuit implementation showed that the 

proposed technique provided a jitter tolerance of up to 5ps (rms). 

Techniques to improve the linearity of the feedback multi-bit DACs implemented 

for a 11-bit, 100MHz bandwidth continuous-time delta-sigma ADC operating at a 

sampling frequency of 2GHz were presented. In particular, a novel DAC linearization 

scheme was proposed which employed both dynamic element matching and self-

calibration of the current sources while minimizing excess loop delay. Design procedure 

for determining optimum dimensions for the DAC current sources to achieve the 

matching and linearity requirements were also explained. The 3-bit current-steering 

DACs were implemented in 0.18µm CMOS technology. It was shown that the proposed 

linearization scheme achieved a SNR performance approximately equal to the ideal 

value. 
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