173 research outputs found

    Second year technical report on-board processing for future satellite communications systems

    Get PDF
    Advanced baseband and microwave switching techniques for large domestic communications satellites operating in the 30/20 GHz frequency bands are discussed. The nominal baseband processor throughput is one million packets per second (1.6 Gb/s) from one thousand T1 carrier rate customer premises terminals. A frequency reuse factor of sixteen is assumed by using 16 spot antenna beams with the same 100 MHz bandwidth per beam and a modulation with a one b/s per Hz bandwidth efficiency. Eight of the beams are fixed on major metropolitan areas and eight are scanning beams which periodically cover the remainder of the U.S. under dynamic control. User signals are regenerated (demodulated/remodulated) and message packages are reformatted on board. Frequency division multiple access and time division multiplex are employed on the uplinks and downlinks, respectively, for terminals within the coverage area and dwell interval of a scanning beam. Link establishment and packet routing protocols are defined. Also described is a detailed design of a separate 100 x 100 microwave switch capable of handling nonregenerated signals occupying the remaining 2.4 GHz bandwidth with 60 dB of isolation, at an estimated weight and power consumption of approximately 400 kg and 100 W, respectively

    DESIGN AND IMPLEMENTATION OF AN ALL-COTS DIGITAL BACK-END FOR A PULSE-DOPPLER SYNTHETIC APERTURE RADAR

    Get PDF
    Radar imaging techniques employing synthetic aperture radar (SAR) are ubiquitous in applications such as defense, remote sensing, space exploration, terrain mapping, and many others. However, to obtain fine image resolution, radar systems must be capable of utilizing large signal bandwidths. By the sampling theorem, a large signal bandwidth equates to a high sampling frequency, resulting in more expensive and complex digital electronics required to digitize and process the waveform. Using linear frequency modulated (LFM) pulses and stretch processing techniques, systems such as frequency-modulated continuous-wave (FMCW) radars reduce the required sampling rate at the expense of longer pulses, higher transmit duty cycle, and decreased pulse repetition frequency. While these tradeoffs are often acceptable, in many situations they are not, and a pulse-Doppler radar system is required. These systems can utilize LFM pulses with nearly any desired pulse length and pulse repetition frequency to perform imaging, but they must have an analog-to-digital converter (ADC) and back-end processing capable of handling the full waveform bandwidth, leading to increased cost, size, or both. At the University of Oklahoma’s Advanced Radar Research Center, a pulse-Doppler radar system for use in a SAR application is designed and built using only commercially available components to decrease the size and cost of the radar, specifically the digital back-end. A minimum size and weight is targeted for this system because it is desired to eventually fly the radar and form images on a lightweight airborne platform, such as a quad- or octo-copter. The challenge with using commercial parts for a custom digital pulse-Doppler radar is that it is difficult to meet the strict timing requirements inherent to pulse-Doppler radar while simultaneously meeting the high-bandwidth requirements imposed by SAR. In this thesis, the design and implementation of the digital back-end for the custom SAR system is presented. The focus is placed on designing a control system and clock distribution scheme in the digital back-end to ensure pulse to pulse coherence while maintaining ideal LFM spectral quality. Additionally, a calibration method is devised to provide accurate range measurements each time the radar is turned on even if the latency between the digital transmitter and receiver changes. At the conclusion of this work, it is shown that the radar system is capable of performing accurate pulse-Doppler radar through the generation of range-Doppler maps from data captured by the radar. The results of these tests indicate that the system is suitable for eventual use in SAR imaging applications

    Clock Synchronisation Assisted Clock and Data Recovery for Sub-Nanosecond Data Centre Optical Switching

    Get PDF
    In current `Cloud' data centres, switching of data between servers is performed using deep hierarchies of interconnected electronic packet switches. Demand for network bandwidth from emerging data centre workloads, combined with the slowing of silicon transistor scaling, is leading to a widening gap between data centre traffic demand and electronically-switched data centre network capacity. All-optical switches could offer a future-proof alternative, with potentially under a third of the power consumption and cost of electronically-switched networks. However, the effective bandwidth of optical switches depends on their overall switching time. This is dominated by the clock and data recovery (CDR) locking time, which takes hundreds of nanoseconds in commercial receivers. Current data centre traffic is dominated by small packets that transmit in tens of nanoseconds, leading to low effective bandwidth, as a high proportion of receiver time is spent performing CDR locking instead of receiving data, removing the benefits of optical switching. High-performance optical switching requires sub-nanosecond CDR locking time to overcome this limitation. This thesis proposes, models, and demonstrates clock synchronisation assisted CDR, which can achieve this. This approach uses clock synchronisation to simplify the complexity of CDR versus previous asynchronous approaches. An analytical model of the technique is first derived that establishes its potential viability. Following this, two approaches to clock synchronisation assisted CDR are investigated: 1. Clock phase caching, which uses clock phase storage and regular updates in a 2km intra-building scale data centre network interconnected by single-mode optical fibre. 2. Single calibration clock synchronisation assisted CDR}, which leverages the 20 times lower thermal sensitivity of hollow core optical fibre versus single-mode fibre to synchronise a 100m cluster scale data centre network, with a single initial phase calibration step. Using a real-time FPGA-based optical switch testbed, sub-nanosecond CDR locking time was demonstrated for both approaches

    An Energy-Efficient Reconfigurable Mobile Memory Interface for Computing Systems

    Get PDF
    The critical need for higher power efficiency and bandwidth transceiver design has significantly increased as mobile devices, such as smart phones, laptops, tablets, and ultra-portable personal digital assistants continue to be constructed using heterogeneous intellectual properties such as central processing units (CPUs), graphics processing units (GPUs), digital signal processors, dynamic random-access memories (DRAMs), sensors, and graphics/image processing units and to have enhanced graphic computing and video processing capabilities. However, the current mobile interface technologies which support CPU to memory communication (e.g. baseband-only signaling) have critical limitations, particularly super-linear energy consumption, limited bandwidth, and non-reconfigurable data access. As a consequence, there is a critical need to improve both energy efficiency and bandwidth for future mobile devices.;The primary goal of this study is to design an energy-efficient reconfigurable mobile memory interface for mobile computing systems in order to dramatically enhance the circuit and system bandwidth and power efficiency. The proposed energy efficient mobile memory interface which utilizes an advanced base-band (BB) signaling and a RF-band signaling is capable of simultaneous bi-directional communication and reconfigurable data access. It also increases power efficiency and bandwidth between mobile CPUs and memory subsystems on a single-ended shared transmission line. Moreover, due to multiple data communication on a single-ended shared transmission line, the number of transmission lines between mobile CPU and memories is considerably reduced, resulting in significant technological innovations, (e.g. more compact devices and low cost packaging to mobile communication interface) and establishing the principles and feasibility of technologies for future mobile system applications. The operation and performance of the proposed transceiver are analyzed and its circuit implementation is discussed in details. A chip prototype of the transceiver was implemented in a 65nm CMOS process technology. In the measurement, the transceiver exhibits higher aggregate data throughput and better energy efficiency compared to prior works

    Novel Predistortion System for 4G/5G Small-Cell and Wideband Transmitters

    Get PDF
    To meet the growing demand for mobile data, various technologies are being introduced to wireless networks to increase system capacity. On one hand, large number of small-cell base stations are adopted to serve the reduced cell size; on the other hand, millimeter wave (mm-wave) systems with large antenna arrays that transmit ultra-wideband signals are expected in fifth generation (5G) networks. Power amplifiers (PAs), responsible for boosting the radio frequency (RF) signal power, are the most critical components in base station transmitters, and dominate the overall efficiency and linearity of the system. The design challenges to balance the contradictory requirements of efficiency and linearity of the PAs are usually addressed by linearization techniques, particularly the digital predistortion (DPD) system. However, existing DPD solutions face increasing difficulties keeping up with new developments in base station technologies. When considering sub-6 GHz small-cell base station transmitters, analog and RF predistortion techniques have recently received renewed attention due to their inherent low power nature. Their achievable linearization capacity is significantly limited, however, largely by their implementation complexity in realizing the needed predistortion models in analog circuitry. On the other hand, despite significant developments in DPD models for wideband signals, the implementations of such DPD models in practical hardware have received relatively little attention. Yet the conventional implementation of a DPD engine is limited by the maximum clock frequency of the digital circuitry employed and cannot be scaled to satisfy the growing bandwidth of transmitted signals for 5G networks. Furthermore, both analog and digital solutions require a transmitter-observation-receiver (TOR) to capture the PA outputs, necessitates the use of analog-to-digital converters (ADCs) whose complexity and power consumption increase with signal bandwidth. Such trend is not scalable for future base stations, and new innovations in feedback and training methods are required. This thesis presents a number of contributions to address the above identified challenges. To reduce the power overhead of the linearization system, a digitally-assisted analog-RF predistortion (DA-ARFPD) system that uses a novel predistortion model is introduced. The proposed finite-impulse-response assisted envelope memory polynomial (FIR-EMP) model allows for a reduction of hardware implementation complexity while maintaining good linearization capacity and low power overhead. A two-step small-signal-assisted parameter identification (SSAPI) algorithm is devised to estimate the parameters of the two main blocks of the FIR-EMP model, such that the training can be completed efficiently. A DA-ARFPD test bench has been built, which incorporates major RF components, to assess the validity of the proposed FIR-EMP scheme and the SSAPI algorithm. Measurement results show that the proposed FIR-EMP model with SSAPI algorithm can successfully linearize multiple PAs driven with various wideband and carrier-aggregated signals of up to 80~MHz modulation bandwidths for sub-6 GHz systems. Next, a hardware-efficient real-time DPD system with scalable linearization bandwidth for ultra-wideband 5G mm-wave transmitters is proposed. It uses a novel parallel-processing DPD engine architecture to process multiple samples per clock cycle, overcomes the linearization bandwidth limit imposed by the maximum clock rate of digital circuits used in conventional DPD implementation. Potentially unlimited linearization bandwidth could be achieved by using the proposed system with current digital circuit technologies. The linearization performance and bandwidth scalability of the proposed system is demonstrated experimentally using a silicon-based Doherty (DPA) with 400 MHz wideband signal operating at 28 GHz, and over-the-air measurements using a 64-element beamforming array with 800 MHz wideband signal, also at 28 GHz. The proposed DPD system achieves over 2.4 GHz linearization bandwidth using only a 300 MHz core clock for the digital circuits. Finally, to reduce the power consumption and cost of the TOR, a new approach to train the predistorter using under-sampled feedback signal is presented. Using aliased samples of the PA's output captured at either baseband or intermedia frequency (IF), the proposed algorithm is able to compute the coefficients of the predistortion engine to linearize the PA using a direct learning architecture. Experimentally, both the baseband and IF schemes achieve linearization performance comparable to a full-rate system. Implemented together with a parallel-processing based DPD engine on a field-programmable gate array (FPGA) based system-on-chip (SOC), the proposed feedback and training solution achieves over 2.4~GHz linearization bandwidth using an ADC operating at a clock rate of 200 MHz. Its performance is demonstrated experimentally by linearizing a silicon DPA with 200 MHz and 400 MHz signals in conductive measurements, and a 64-element beamforming array with 400 MHz and 800 MHz signals in over-the-air testing

    REAL-TIME ADAPTIVE PULSE COMPRESSION ON RECONFIGURABLE, SYSTEM-ON-CHIP (SOC) PLATFORMS

    Get PDF
    New radar applications need to perform complex algorithms and process a large quantity of data to generate useful information for the users. This situation has motivated the search for better processing solutions that include low-power high-performance processors, efficient algorithms, and high-speed interfaces. In this work, hardware implementation of adaptive pulse compression algorithms for real-time transceiver optimization is presented, and is based on a System-on-Chip architecture for reconfigurable hardware devices. This study also evaluates the performance of dedicated coprocessors as hardware accelerator units to speed up and improve the computation of computing-intensive tasks such matrix multiplication and matrix inversion, which are essential units to solve the covariance matrix. The tradeoffs between latency and hardware utilization are also presented. Moreover, the system architecture takes advantage of the embedded processor, which is interconnected with the logic resources through high-performance buses, to perform floating-point operations, control the processing blocks, and communicate with an external PC through a customized software interface. The overall system functionality is demonstrated and tested for real-time operations using a Ku-band testbed together with a low-cost channel emulator for different types of waveforms

    NASA 60 GHz intersatellite communication link definition study. Baseline document

    Get PDF
    The overall system and component concepts for a 60 GHz intersatellite communications link system (ICLS) are described. The ICLS was designed to augment the capabilities of the current Tracking and Data Relay Satellite System (TDRSS), providing a data rate capacity large enough to accommodate the expected rates for user satellites (USAT's) in the post-1995 timeframe. The use of 60 GHz for the anticipated successor to TDRSS, the Tracking and Data Acquisition System (TDAS), was selected because of current technology development that will enable multigigibit data rates. Additionally, the attenuation of the earth's atmosphere at 60 GHz means that there is virtually no possibility of terrestrially generated interference (intentional or accidental) or terrestrially based intercept. The ICLS includes the following functional areas: (1) the ICLS payload package on the GEO TDAS satellite that communicates simultaneously with up to five LEO USAT's; (2) the payload package on the USAT that communicates with the TDAS satellite; and (3) the crosslink payload package on the TDAS satellite that communicates with another TDAS satellite. Two methods of data relay on-board the TDAS spacecraft were addressed. One is a complete baseband system (demod and remod) with a bi-directional 2 Gbps data stream; the other is a channelized system wherein some of the channels are baseband and others are merely frequency translated before re-transmission. Descriptions of the TDAS antenna, transmitter, receiver, and mechanical designs are presented

    Design of software radio

    Get PDF
    Software Define Radio (SDR) has become a prevalent technology in wireless systems. In SDR some or all of the signal specific handling is implemented in software functions, while other functions like decimation, interpolation, digital up-conversion and digital down conversion are done on reprogrammable Digital Signal Processor or Field Programmable Gate Arrays.Twelve laboratory exercises have been designed to lead the student through the process of using the Universal Software Radio peripheral (USRP) hardware and GNU Radio open source software
    • …
    corecore