557 research outputs found

    Design of a 4.2-5.4 GHz differential LC VCO using 0.35 mu m SiGeBiCMOS technology for IEEE 802.11a applications

    Get PDF
    In this paper, a 4.2-5.4 GHz, -Gm LC voltage controlled oscillator (VCO) for IEEE 802.11a standard is presented. The circuit is designed with AMS 0.35 mu m SiGe BiCMOS process that includes high-speed SiGe Heterojunction Bipolar Transistors (HBTs). According to post-layout simulation results, phase noise is -110.7 dBc/Hz at 1 MHz offset from 5.4 GHz carrier frequency and -113.4 dBc/Hz from 4.2 GHz carrier frequency. A linear, 1200 MHz tuning range is obtained from the simulations, utilizing accumulation-mode varactors. Phase noise was also found to be relatively low because of taking advantage of differential tuning concept. Output power of the fundamental frequency changes between 4.8 dBm and 5.5 dBm depending on the tuning voltage. Based on the simulation results, the circuit draws 2 mA without buffers and 14.5 mA from 2.5 V supply including buffer circuits leading to a total power dissipation of 36.25 mW. The circuit layout occupies an area of 0.6 mm(2) on Si substrate, including DC and RF pads

    Design And Implementation Of Up-Conversion Mixer And Lc-Quadrature Oscillator For IEEE 802.11a WLAN Transmitter Application Utilizing 0.18 Pm CMOS Technology [TK7871.99.M44 H279 2008 f rb].

    Get PDF
    Perlumbaan implementasi litar terkamil radio, dengan kos yang rendah telah menggalakkan penggunaan teknologi CMOS. The drive for cost reduction has led to the use of CMOS technology for highly integrated radios

    Study on wideband voltage controlled oscillator and high efficiency power amplifier ICs for wireless communications

    Get PDF
    制度:新 ; 報告番号:甲3604号 ; 学位の種類:博士(工学) ; 授与年月日:2012/2/20 ; 早大学位記番号:新595

    A Review of Watt-Level CMOS RF Power Amplifiers

    Full text link

    CMOS Power Amplifier Design Techniques for UWB Communication: A Review

    Get PDF
    This paper reviews CMOS power amplifier (PA) design techniques in favour of ultra-wideband (UWB) application. The PA circuit design is amongst the most difficult delegation in developing the UWB transmitter due to conditions that must be achieved, including high gain, good input and output matching, efficiency, linearity, low group delay and low power consumption. In order to meet these requirements, many researchers came up with different techniques. Among the techniques used are distributed amplifiers, resistive shunt feedback, RLC matching, shuntshunt feedback, inductive source degeneration, current reuse, shunt peaking, and stagger tuning. Therefore, problems and limitation of UWB CMOS PA and circuit topology are reviewed. A number of works on the UWB CMOS PA from the year 2004 to 2016 are reviewed in this paper. In recent developments, UWB CMOS PA are analysed, hence imparting a comparison of performance criteria based on several different topologies

    Reconfigurable RF Front End Components for Multi-Radio Platform Applications

    Get PDF
    The multi-service requirements of the 3G and 4G communication systems, and their backward compatibility requirements, create challenges for the antenna and RF front-end designs with multi-band and wide-band techniques. These challenges include: multiple filters, which are lossy, bulky, and expensive, are needed in the system; device board size limitation and the associated isolation problems caused by the limited space and crowd circuits; and the insertion loss issues created by the single-pole-multi-through antenna switch. As will be shown, reconfigurable antennas can perform portions of the filter functions, which can help solve the multiple filters problem. Additionally, reconfigurable RF circuits can decrease the circuit size and output ports, which can help solve board size limitation, and isolation and antenna switch insertion loss issues. To validate the idea that reconfigurable antennas and reconfigurable RF circuits are a viable option for multi-service communication system, a reconfigurable patch antenna, a reconfigurable monopole antenna, and a reconfigurable power amplifier (PA) have been developed. All designs adapt state-of-the-art techniques. For the reconfigurable antenna designs, an experiment demonstrating its advantages, such as jamming signal resistance, has been performed. Reconfigurable antennas provide a better out-ofoperating- band noise performance than the multi-band antennas design, decreasing the need for filters in the system. A full investigation of reconfigurable antennas, including the single service reconfigurable antenna, the mixed signal service reconfigurable antenna, and the multi-band reconfigurable antenna, has been completed. The design challenges, which include switches investigation, switches integration, and service grouping techniques, have been discussed. In the reconfigurable PA portion, a reconfigurable PA structure has first been demonstrated, and includes a reconfigurable output matching network (MN) and a reconfigurable die design. To validate the proposed reconfigurable PA structure, a reconfigurable PA for a 3G cell phone system has been designed with a multi-chip module technique. The reconfigurable PA structure can significantly decrease the real-estate, cost, and complexity of the PA design. Further, by decreasing the number of output ports, the number of poles for the antenna switch will be decreased as well, leading to an insertion loss decrease

    An Octave-Range, Watt-Level, Fully-Integrated CMOS Switching Power Mixer Array for Linearization and Back-Off-Efficiency Improvement

    Get PDF
    The power mixer array is presented as a novel power generation approach for non-constant envelope signals. It comprises several power mixer units that are dynamically turned on and off to improve the linearity and back-off efficiency. At the circuit level, the power mixer unit can operate as a switching amplifier to achieve high peak power efficiency. Additional circuit level linearization and back-off efficiency improvement techniques are also proposed. To demonstrate the feasibility of this idea, a fully-integrated octave-range CMOS power mixer array is implemented in a 130 nm CMOS process. It is operational between 1.2 GHz and 2.4 GHz and can generate an output power of +31.3 dBm into an external 50 Ω load with a PAE of 42% and a gain compression of only 0.4 dB at 1.8 GHz. It achieves a PAE of 25%, at an average output power of +26.4 dBm, and an EVM of 4.6% with a non-constant-envelope 16 QAM signal. It can also produce arbitrary signal levels down to -70 dBm of output power with the 16 QAM-modulated signal without any RF gain control circuit

    A Fully-Integrated Reconfigurable Dual-Band Transceiver for Short Range Wireless Communications in 180 nm CMOS

    Get PDF
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.A fully-integrated reconfigurable dual-band (760-960 MHz and 2.4-2.5 GHz) transceiver (TRX) for short range wireless communications is presented. The TRX consists of two individually-optimized RF front-ends for each band and one shared power-scalable analog baseband. The sub-GHz receiver has achieved the maximum 75 dBc 3rd-order harmonic rejection ratio (HRR3) by inserting a Q-enhanced notch filtering RF amplifier (RFA). In 2.4 GHz band, a single-ended-to-differential RFA with gain/phase imbalance compensation is proposed in the receiver. A ΣΔ fractional-N PLL frequency synthesizer with two switchable Class-C VCOs is employed to provide the LOs. Moreover, the integrated multi-mode PAs achieve the output P1dB (OP1dB) of 16.3 dBm and 14.1 dBm with both 25% PAE for sub-GHz and 2.4 GHz bands, respectively. A power-control loop is proposed to detect the input signal PAPR in real-time and flexibly reconfigure the PA's operation modes to enhance the back-off efficiency. With this proposed technique, the PAE of the sub-GHz PA is improved by x3.24 and x1.41 at 9 dB and 3 dB back-off powers, respectively, and the PAE of the 2.4 GHz PA is improved by x2.17 at 6 dB back-off power. The presented transceiver has achieved comparable or even better performance in terms of noise figure, HRR, OP1dB and power efficiency compared with the state-of-the-art.Peer reviewe

    Survey on individual components for a 5 GHz receiver system using 130 nm CMOS technology

    Get PDF
    La intención de esta tesis es recopilar información desde un punto de vista general sobre los diferentes tipos de componentes utilizados en un receptor de señales a 5 GHz utilizando tecnología CMOS. Se ha realizado una descripción y análisis de cada uno de los componentes que forman el sistema, destacando diferentes tipos de configuraciones, figuras de mérito y otros parámetros. Se muestra una tabla resumen al final de cada sección, comparando algunos diseños que se han ido presentando a lo largo de los años en conferencias internacionales de la IEEE.The intention of this thesis is to gather information from an overview point about the different types of components used in a 5 GHz receiver using CMOS technology. A review of each of the components that form the system has been made, highlighting different types of configurations, figure of merits and parameters. A summary table is shown at the end of each section, comparing many designs that have been presented over the years at international conferences of the IEEE.Departamento de Ingeniería Energética y FluidomecánicaGrado en Ingeniería en Electrónica Industrial y Automátic

    A 5-GHz fully integrated full PMOS low-phase-noise LC VCO

    Full text link
    corecore