469 research outputs found

    Diffuse optical tomography to investigate the newborn brain

    Get PDF
    Over the past 15 years, functional near-infrared spectroscopy (fNIRS) has emerged as a powerful technology for studying the developing brain. Diffuse optical tomography (DOT) is an extension of fNIRS that combines hemodynamic information from dense optical sensor arrays over a wide field of view. Using image reconstruction techniques, DOT can provide images of the hemodynamic correlates to neural function that are comparable to those produced by functional magnetic resonance imaging. This review article explains the principles of DOT, and highlights the growing literature on the use of DOT in the study of healthy development of the infant brain, and the study of novel pathophysiology in infants with brain injury. Current challenges, particularly around instrumentation and image reconstruction, will be discussed, as will the future of this growing field, with particular focus on whole-brain, time-resolved DOT

    Optimum selection of individual-level neonatal models in place of subject-specific priors for infant diffuse optical tomography

    Get PDF
    Diffuse optical tomography relies on anatomical models to simulate light transport. We investigate which cotside measures are best to choose an individual-level head model when subject-specific data is unavailable for neonatal infants

    Mapping cortical haemodynamics during neonatal seizures using diffuse optical tomography: A case study

    Get PDF
    AbstractSeizures in the newborn brain represent a major challenge to neonatal medicine. Neonatal seizures are poorly classified, under-diagnosed, difficult to treat and are associated with poor neurodevelopmental outcome. Video-EEG is the current gold-standard approach for seizure detection and monitoring. Interpreting neonatal EEG requires expertise and the impact of seizures on the developing brain remains poorly understood. In this case study we present the first ever images of the haemodynamic impact of seizures on the human infant brain, obtained using simultaneous diffuse optical tomography (DOT) and video-EEG with whole-scalp coverage. Seven discrete periods of ictal electrographic activity were observed during a 60 minute recording of an infant with hypoxic–ischaemic encephalopathy. The resulting DOT images show a remarkably consistent, high-amplitude, biphasic pattern of changes in cortical blood volume and oxygenation in response to each electrographic event. While there is spatial variation across the cortex, the dominant haemodynamic response to seizure activity consists of an initial increase in cortical blood volume prior to a large and extended decrease typically lasting several minutes. This case study demonstrates the wealth of physiologically and clinically relevant information that DOT–EEG techniques can yield. The consistency and scale of the haemodynamic responses observed here also suggest that DOT–EEG has the potential to provide improved detection of neonatal seizures

    How short is short? Optimum source-detector distance for short-separation channels in functional near-infrared spectroscopy

    Get PDF
    In recent years, it has been demonstrated that using functional near-infrared spectroscopy (fNIRS) channels with short separations to explicitly sample extra-cerebral tissues can provide a significant improvement in the accuracy and reliability of fNIRS measurements. The aim of these short-separation channels is to measure the same superficial hemodynamics observed by standard fNIRS channels while also being insensitive to the brain. We use Monte Carlo simulations of photon transport in anatomically informed multilayer models to determine the optimum source–detector distance for short-separation channels in adult and newborn populations. We present a look-up plot that provides (for an acceptable value of short-separation channel brain sensitivity relative to standard channel brain sensitivity) the optimum short-separation distance. Though values vary across the scalp, when the acceptable ratio of the short-separation channel brain sensitivity to standard channel brain sensitivity is set at 5%, the optimum short-separation distance is 8.4 mm in the typical adult and 2.15 mm in the term-age infant

    Construction and validation of a database of head models for functional imaging of the neonatal brain

    Get PDF
    The neonatal brain undergoes dramatic structural and functional changes over the last trimester of gestation. The accuracy of source localisation of brain activity recorded from the scalp therefore relies on accurate age-specific head models. Although an age-appropriate population-level atlas could be used, detail is lost in the construction of such atlases, in particular with regard to the smoothing of the cortical surface, and so such a model is not representative of anatomy at an individual level. In this work, we describe the construction of a database of individual structural priors of the neonatal head using 215 individual-level datasets at ages 29-44 weeks postmenstrual age from the Developing Human Connectome Project. We have validated a method to segment the extra-cerebral tissue against manual segmentation. We have also conducted a leave-one-out analysis to quantify the expected spatial error incurred with regard to localising functional activation when using a best-matching individual from the database in place of a subject-specific model; the median error was calculated to be 8.3 mm (median absolute deviation 3.8 mm). The database can be applied for any functional neuroimaging modality which requires structural data whereby the physical parameters associated with that modality vary with tissue type and is freely available at www.ucl.ac.uk/dot-hub

    The development and application of structural priors for diffuse optical imaging in infants from newborn to two years of age

    Get PDF
    This thesis describes the development and application of age-appropriate structural priors to improve the localisation accuracy of diffuse optical tomography (DOT) approaches in infants aged from birth to two years of age. Knowledge of the target cranial anatomy, known as a structural prior, is required to produce three-dimensional images localising concentration changes to the cortex. A structural prior would ideally be subject-specific, i.e. derived from structural magnetic resonance imaging (MRI) data from each specific subject. Requiring a structural scan from every infant participant, however, is not feasible and undermines many of the benefits of DOT. A review was conducted to catalogue available infant structural MRI data, and selected data was then used to produce structural priors for infants aged 1- to 24-months. Conventional analyses using functional near-infrared spectroscopy (fNIRS) implicitly assume that head size and array position are constant across infants. Using DOT, the validity of assuming these parameters constant in a longitudinal infant cohort was investigated. The results show that this assumption is reasonable at the group-level in infants aged 5- to 12-months but becomes less valid for smaller group sizes. A DOT approach was determined to illicit more subtle effects of activation, particularly for smaller group sizes and expected responses. Using state-of-the-art MRI data from the Developing Human Connectome Project, a database of structural priors of the neonatal head was produced for infants aged pre-term to term-equivalent age. A leave-one-out approach was used to determine how best to find a match between a given infant and a model from the database, and how best to spatially register the model to minimise the anatomical and localisation errors relative to subject-specific anatomy. Model selection based on the 10/20 scalp positions was determined to be the best method (of those based on external features of the head) to minimise these errors

    ANIMATE: Wearable, flexible, and ultra-lightweight high-density diffuse optical tomography technologies for functional neuroimaging of newborns

    Get PDF
    We have developed a series of wearable high-density diffuse optical tomography (HD-DOT) technologies specifically for neonatal applications. These systems provide an ultra-lightweight form factor, a low profile and high mechanical flexibility. This new technology is validated using a novel, anatomically accurate dynamic phantom

    Early changes in brain structure correlate with language outcomes in children with neonatal encephalopathy.

    Get PDF
    Global patterns of brain injury correlate with motor, cognitive, and language outcomes in survivors of neonatal encephalopathy (NE). However, it is still unclear whether local changes in brain structure predict specific deficits. We therefore examined whether differences in brain structure at 6 months of age are associated with neurodevelopmental outcomes in this population. We enrolled 32 children with NE, performed structural brain MR imaging at 6 months, and assessed neurodevelopmental outcomes at 30 months. All subjects underwent T1-weighted imaging at 3 T using a 3D IR-SPGR sequence. Images were normalized in intensity and nonlinearly registered to a template constructed specifically for this population, creating a deformation field map. We then used deformation based morphometry (DBM) to correlate variation in the local volume of gray and white matter with composite scores on the Bayley Scales of Infant and Toddler Development (Bayley-III) at 30 months. Our general linear model included gestational age, sex, birth weight, and treatment with hypothermia as covariates. Regional brain volume was significantly associated with language scores, particularly in perisylvian cortical regions including the left supramarginal gyrus, posterior superior and middle temporal gyri, and right insula, as well as inferior frontoparietal subcortical white matter. We did not find significant correlations between regional brain volume and motor or cognitive scale scores. We conclude that, in children with a history of NE, local changes in the volume of perisylvian gray and white matter at 6 months are correlated with language outcome at 30 months. Quantitative measures of brain volume on early MRI may help identify infants at risk for poor language outcomes

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    Sleep State Modulates Resting-State Functional Connectivity in Neonates.

    Get PDF
    The spontaneous cerebral activity that gives rise to resting-state networks (RSNs) has been extensively studied in infants in recent years. However, the influence of sleep state on the presence of observable RSNs has yet to be formally investigated in the infant population, despite evidence that sleep modulates resting-state functional connectivity in adults. This effect could be extremely important, as most infant neuroimaging studies rely on the neonate to remain asleep throughout data acquisition. In this study, we combine functional near-infrared spectroscopy with electroencephalography to simultaneously monitor sleep state and investigate RSNs in a cohort of healthy term born neonates. During active sleep (AS) and quiet sleep (QS) our newborn neonates show functional connectivity patterns spatially consistent with previously reported RSN structures. Our three independent functional connectivity analyses revealed stronger interhemispheric connectivity during AS than during QS. In turn, within hemisphere short-range functional connectivity seems to be enhanced during QS. These findings underline the importance of sleep state monitoring in the investigation of RSNs
    • …
    corecore