7 research outputs found

    Parallel-sampling ADC architecture for power-efficient broadband multi-carrier systems

    Get PDF

    Time interleaved counter analog to digital converters

    Get PDF
    The work explores extending time interleaving in A/D converters, by applying a high-level of parallelism to one of the slowest and simplest types of data-converters, the counter ADC. The motivation for the work is to realise high-performance re-configurable A/D converters for use in multi-standard and multi-PHY communication receivers with signal bandwidths in the 10s to 100s of MHz. The counter ADC requires only a comparator, a ramp signal, and a digital counter, where the comparator compares the sampled input against all possible quantisation levels sequentially. This work explores arranging counter ADCs in large time-interleaved arrays, building a Time Interleaved Counter (TIC) ADC. The key to realising a TIC ADC is distributed sampling and a global multi-phase ramp generator realised with a novel figure-of-8 rotating resistor ring. Furthermore Counter ADCs allow for re-configurability between effective sampling rate and resolution due to their sequential comparison of reference levels in conversion. A prototype TIC ADC of 128-channels was fabricated and measured in 0.13μm CMOS technology, where the same block can be configured to operate as a 7-bit 1GS/s, 8-bit 500MS/s, or 9-bit 250MS/s dataconverter. The ADC achieves a sub 400fJ/step FOM in all modes of configuration

    Wideband CMOS Data Converters for Linear and Efficient mmWave Transmitters

    Get PDF
    With continuously increasing demands for wireless connectivity, higher\ua0carrier frequencies and wider bandwidths are explored. To overcome a limited transmit power at these higher carrier frequencies, multiple\ua0input multiple output (MIMO) systems, with a large number of transmitters\ua0and antennas, are used to direct the transmitted power towards\ua0the user. With a large transmitter count, each individual transmitter\ua0needs to be small and allow for tight integration with digital circuits. In\ua0addition, modern communication standards require linear transmitters,\ua0making linearity an important factor in the transmitter design.In this thesis, radio frequency digital-to-analog converter (RF-DAC)-based transmitters are explored. They shift the transition from digital\ua0to analog closer to the antennas, performing both digital-to-analog\ua0conversion and up-conversion in a single block. To reduce the need for\ua0computationally costly digital predistortion (DPD), a linear and wellbehaved\ua0RF-DAC transfer characteristic is desirable. The combination\ua0of non-overlapping local oscillator (LO) signals and an expanding segmented\ua0non-linear RF-DAC scaling is evaluated as a way to linearize\ua0the transmitter. This linearization concept has been studied both for\ua0the linearization of the RF-DAC itself and for the joint linearization of\ua0the cascaded RF-DAC-based modulator and power amplifier (PA) combination.\ua0To adapt the linearization, observation receivers are needed.\ua0In these, high-speed analog-to-digital converters (ADCs) have a central\ua0role. A high-speed ADC has been designed and evaluated to understand\ua0how concepts used to increase the sample rate affect the dynamic performance
    corecore