671 research outputs found

    SLAM research for port AGV based on 2D LIDAR

    Get PDF
    With the increase in international trade, the transshipment of goods at international container ports is very busy. The AGV (Automated Guided Vehicle) has been used as a new generation of automated container horizontal transport equipment. The AGV is an automated unmanned vehicle that can work 24 hours a day, increasing productivity and reducing labor costs compared to using container trucks. The ability to obtain information about the surrounding environment is a prerequisite for the AGV to automatically complete tasks in the port area. At present, the method of AGV based on RFID tag positioning and navigation has a problem of excessive cost. This dissertation has carried out a research on applying light detection and ranging (LIDAR) simultaneous localization and mapping (SLAM) technology to port AGV. In this master's thesis, a mobile test platform based on a laser range finder is developed to scan 360-degree environmental information (distance and angle) centered on the LIDAR and upload the information to a real-time database to generate surrounding environmental maps, and the obstacle avoidance strategy was developed based on the acquired information. The effectiveness of the platform was verified by the experiments from multiple scenarios. Then based on the first platform, another experimental platform with encoder and IMU sensor was developed. In this platform, the functionality of SLAM is enabled by the GMapping algorithm and the installation of the encoder and IMU sensor. Based on the established environment SLAM map, the path planning and obstacle avoidance functions of the platform were realized.Com o aumento do comércio internacional, o transbordo de mercadorias em portos internacionais de contentores é muito movimentado. O AGV (“Automated Guided Vehicle”) foi usado como uma nova geração de equipamentos para transporte horizontal de contentores de forma automatizada. O AGV é um veículo não tripulado automatizado que pode funcionar 24 horas por dia, aumentando a produtividade e reduzindo os custos de mão-de-obra em comparação com o uso de camiões porta-contentores. A capacidade de obter informações sobre o ambiente circundante é um pré-requisito para o AGV concluir automaticamente tarefas na área portuária. Atualmente, o método de AGV baseado no posicionamento e navegação de etiquetas RFID apresenta um problema de custo excessivo. Nesta dissertação foi realizada uma pesquisa sobre a aplicação da tecnologia LIDAR de localização e mapeamento simultâneo (SLAM) num AGV. Uma plataforma de teste móvel baseada num telémetro a laser é desenvolvida para examinar o ambiente em redor em 360 graus (distância e ângulo), centrado no LIDAR, e fazer upload da informação para uma base de dados em tempo real para gerar um mapa do ambiente em redor. Uma estratégia de prevenção de obstáculos foi também desenvolvida com base nas informações adquiridas. A eficácia da plataforma foi verificada através da realização de testes com vários cenários e obstáculos. Por fim, com base na primeira plataforma, uma outra plataforma experimental com codificador e sensor IMU foi também desenvolvida. Nesta plataforma, a funcionalidade do SLAM é ativada pelo algoritmo GMapping e pela instalação do codificador e do sensor IMU. Com base no estabelecimento do ambiente circundante SLAM, foram realizadas as funções de planeamento de trajetória e prevenção de obstáculos pela plataforma

    Toward Future Automatic Warehouses: An Autonomous Depalletizing System Based on Mobile Manipulation and 3D Perception

    Get PDF
    This paper presents a mobile manipulation platform designed for autonomous depalletizing tasks. The proposed solution integrates machine vision, control and mechanical components to increase flexibility and ease of deployment in industrial environments such as warehouses. A collaborative robot mounted on a mobile base is proposed, equipped with a simple manipulation tool and a 3D in-hand vision system that detects parcel boxes on a pallet, and that pulls them one by one on the mobile base for transportation. The robot setup allows to avoid the cumbersome implementation of pick-and-place operations, since it does not require lifting the boxes. The 3D vision system is used to provide an initial estimation of the pose of the boxes on the top layer of the pallet, and to accurately detect the separation between the boxes for manipulation. Force measurement provided by the robot together with admittance control are exploited to verify the correct execution of the manipulation task. The proposed system was implemented and tested in a simplified laboratory scenario and the results of experimental trials are reported

    Autonomous robot systems and competitions: proceedings of the 12th International Conference

    Get PDF
    This is the 2012’s edition of the scientific meeting of the Portuguese Robotics Open (ROBOTICA’ 2012). It aims to disseminate scientific contributions and to promote discussion of theories, methods and experiences in areas of relevance to Autonomous Robotics and Robotic Competitions. All accepted contributions are included in this proceedings book. The conference program has also included an invited talk by Dr.ir. Raymond H. Cuijpers, from the Department of Human Technology Interaction of Eindhoven University of Technology, Netherlands.The conference is kindly sponsored by the IEEE Portugal Section / IEEE RAS ChapterSPR-Sociedade Portuguesa de Robótic

    Interactive Camera Network Design using a Virtual Reality Interface

    Full text link
    Traditional literature on camera network design focuses on constructing automated algorithms. These require problem specific input from experts in order to produce their output. The nature of the required input is highly unintuitive leading to an unpractical workflow for human operators. In this work we focus on developing a virtual reality user interface allowing human operators to manually design camera networks in an intuitive manner. From real world practical examples we conclude that the camera networks designed using this interface are highly competitive with, or superior to those generated by automated algorithms, but the associated workflow is much more intuitive and simple. The competitiveness of the human-generated camera networks is remarkable because the structure of the optimization problem is a well known combinatorial NP-hard problem. These results indicate that human operators can be used in challenging geometrical combinatorial optimization problems given an intuitive visualization of the problem.Comment: 11 pages, 8 figure

    New Technology and Automation in Freight Transport and Handling Systems

    Get PDF
    This is an evidence review that examines the trends in manufacturing and global supply chains, looking at the international trade, technology and users, and how these may change between now and 2040. The review has been commissioned by the Government Office for Science within the Foresight project. The Foresight Future of Mobility project is run from within the UK Government Office for Science (GO-Science). The Foresight project was launched to try to understand the broad question "What benefits/ opportunities could the transport system of the future provide and what are the implications for Government and society?

    A Reinforcement Learning Approach for Robotic Unloading from Visual Observations

    Full text link
    In this work, we focus on a robotic unloading problem from visual observations, where robots are required to autonomously unload stacks of parcels using RGB-D images as their primary input source. While supervised and imitation learning have accomplished good results in these types of tasks, they heavily rely on labeled data, which are challenging to obtain in realistic scenarios. Our study aims to develop a sample efficient controller framework that can learn unloading tasks without the need for labeled data during the learning process. To tackle this challenge, we propose a hierarchical controller structure that combines a high-level decision-making module with classical motion control. The high-level module is trained using Deep Reinforcement Learning (DRL), wherein we incorporate a safety bias mechanism and design a reward function tailored to this task. Our experiments demonstrate that both these elements play a crucial role in achieving improved learning performance. Furthermore, to ensure reproducibility and establish a benchmark for future research, we provide free access to our code and simulation

    Contemporary Robotics

    Get PDF
    This book book is a collection of 18 chapters written by internationally recognized experts and well-known professionals of the field. Chapters contribute to diverse facets of contemporary robotics and autonomous systems. The volume is organized in four thematic parts according to the main subjects, regarding the recent advances in the contemporary robotics. The first thematic topics of the book are devoted to the theoretical issues. This includes development of algorithms for automatic trajectory generation using redudancy resolution scheme, intelligent algorithms for robotic grasping, modelling approach for reactive mode handling of flexible manufacturing and design of an advanced controller for robot manipulators. The second part of the book deals with different aspects of robot calibration and sensing. This includes a geometric and treshold calibration of a multiple robotic line-vision system, robot-based inline 2D/3D quality monitoring using picture-giving and laser triangulation, and a study on prospective polymer composite materials for flexible tactile sensors. The third part addresses issues of mobile robots and multi-agent systems, including SLAM of mobile robots based on fusion of odometry and visual data, configuration of a localization system by a team of mobile robots, development of generic real-time motion controller for differential mobile robots, control of fuel cells of mobile robots, modelling of omni-directional wheeled-based robots, building of hunter- hybrid tracking environment, as well as design of a cooperative control in distributed population-based multi-agent approach. The fourth part presents recent approaches and results in humanoid and bioinspirative robotics. It deals with design of adaptive control of anthropomorphic biped gait, building of dynamic-based simulation for humanoid robot walking, building controller for perceptual motor control dynamics of humans and biomimetic approach to control mechatronic structure using smart materials

    Hope Global -- BEADED PROFILE COUNTER

    Get PDF
    Hope Global runs a Beaded Profile extrusion line that features a polypropylene plastic bead, bonded to a polypropylene non-woven synthetic material. The product is run through a cooling tank, vision inspection system, laser cutter, and finally loaded into boxes where they are weighed and packed. These bonded pieces are shipped to vehicle dealerships around the world as they are used to clip a variety of seat covers to their respective seats. Once the laser cutter executes a pattern of cuts for a given part, that part is counted and sent down a conveyor belt to drop into the J-Box. However, the current counting system has proven to be ineffective, as there is no automatic reset for the product counter on the system. An operator with the task to inspect and package the pieces, at the end of the line, is forced to intervene and frequently neglect their assignment in order to reset the counter on the laser cutter. Due to inefficiencies in the drying process, change is humidity and a fluctuating ambient temperature, Hope Global would like to deviate from the current weighing system as a means to count the final product. Before completing any design work for this solution, patent and literature searches were completed to fully understand methods of previous inventions pertaining to the problem at hand. Thirty design concepts were brainstormed by each team member with sketches and descriptions. Then research techniques ruled out many of them. Through extensive research on previous inventions with this technique, it was determined that using the already efficient laser cutter with a new counting system would be quite complicated. In fact, upon further research and consultation meetings at Hope Global, it was determined that any additional computerized system was inefficient for this solution. It was determined that linking the cutting sequence counter to a simple mechanical system is common in a manufacturing plant and also inexpensive. At this point in the design process it was decided that a diverting system installed at the end of the conveyor belt would be the optimal solution to this manufacturing problem. Upon further inspection of the design specifications and dimensions at the facility, the concepts were narrowed down further and a physical component was designed on SolidWorks and produced with a 3D printer. This design consists of a two angled aluminum walls that guide pieces to the desired location as well as a stabilization platform. A pin axis will be attached to a bracket that is connected to the conveyor belt walls. A motor mounted to a bracket will be linked to the counting system, signaling for a rotation of the guide once the desired count is attained. A multitude of 3D printed models have been created and tested at the facility, with minor design changes necessary after each test. After four testing trials, a final 3D model was printed and a sheet metal prototype was machined at the Hope Global facility. Moving forward, the metal prototype will be adjusted to meet the specifications of the final 3D model and a SVL-201 servo motor will be mounted to an additional bracket and gear-belt system to initiate rotation. This design ensures an autonomous method of counting beaded profile parts at Hope Global with 100 percent accuracy
    corecore