934 research outputs found

    Advanced Energy Harvesting Technologies

    Get PDF
    Energy harvesting is the conversion of unused or wasted energy in the ambient environment into useful electrical energy. It can be used to power small electronic systems such as wireless sensors and is beginning to enable the widespread and maintenance-free deployment of Internet of Things (IoT) technology. This Special Issue is a collection of the latest developments in both fundamental research and system-level integration. This Special Issue features two review papers, covering two of the hottest research topics in the area of energy harvesting: 3D-printed energy harvesting and triboelectric nanogenerators (TENGs). These papers provide a comprehensive survey of their respective research area, highlight the advantages of the technologies and point out challenges in future development. They are must-read papers for those who are active in these areas. This Special Issue also includes ten research papers covering a wide range of energy-harvesting techniques, including electromagnetic and piezoelectric wideband vibration, wind, current-carrying conductors, thermoelectric and solar energy harvesting, etc. Not only are the foundations of these novel energy-harvesting techniques investigated, but the numerical models, power-conditioning circuitry and real-world applications of these novel energy harvesting techniques are also presented

    2D omni‐directional wireless power transfer modeling for unmanned aerial vehicles with noncollaborative charging system control

    Get PDF
    Wireless power transfer (WPT) has been extensively studied from various aspects such as far field and near field, operating frequency, coil design, matched capacitance values, misaligned locations of transmitting and receiving coils, distance variance between them, target loads in the specific locations, environment, and operating conditions. This is due to the usefulness of WPT technology in many applications, including the revolutionary method of auto-recharging of unmanned aerial vehicles (UAVs). This paper presents analytical modeling of a WPT-link with two orthogonal transmitting coils arranged to produce an omnidirectional magnetic field suitable for charging a moving rotating load, maximizing energy transfer without any feedback from the receiving end. To achieve a suitable 2D WPT simulation system, as well as an accurate control design, the mutual coupling values in terms of receiver angular rotation are simulated using Ansys software. Power transfer is maximized by using extremum seeking control (ESC), making use of the input power as an objective function with specific parameter values that represent the WPT model to obtain the results. The results shown are those of the input power transmitted by the transmitting-end coils to a load of an orbiting mobile UAV. Based on the simulation results, the controller can achieve maximum power transfer in 100 µs of duration when the speed of the UAV is close to 314 rad/s

    Advanced Fault Diagnosis and Health Monitoring Techniques for Complex Engineering Systems

    Get PDF
    Over the last few decades, the field of fault diagnostics and structural health management has been experiencing rapid developments. The reliability, availability, and safety of engineering systems can be significantly improved by implementing multifaceted strategies of in situ diagnostics and prognostics. With the development of intelligence algorithms, smart sensors, and advanced data collection and modeling techniques, this challenging research area has been receiving ever-increasing attention in both fundamental research and engineering applications. This has been strongly supported by the extensive applications ranging from aerospace, automotive, transport, manufacturing, and processing industries to defense and infrastructure industries

    A Novel Power-Efficient Wireless Multi-channel Recording System for the Telemonitoring of Electroencephalography (EEG)

    Get PDF
    This research introduces the development of a novel EEG recording system that is modular, batteryless, and wireless (untethered) with the supporting theoretical foundation in wireless communications and related design elements and circuitry. Its modular construct overcomes the EEG scaling problem and makes it easier for reconfiguring the hardware design in terms of the number and placement of electrodes and type of standard EEG system contemplated for use. In this development, portability, lightweight, and applicability to other clinical applications that rely on EEG data are sought. Due to printer tolerance, the 3D printed cap consists of 61 electrode placements. This recording capacity can however extend from 21 (as in the international 10-20 systems) up to 61 EEG channels at sample rates ranging from 250 to 1000 Hz and the transfer of the raw EEG signal using a standard allocated frequency as a data carrier. The main objectives of this dissertation are to (1) eliminate the need for heavy mounted batteries, (2) overcome the requirement for bulky power systems, and (3) avoid the use of data cables to untether the EEG system from the subject for a more practical and less restrictive setting. Unpredictability and temporal variations of the EEG input make developing a battery-free and cable-free EEG reading device challenging. Professional high-quality and high-resolution analog front ends are required to capture non-stationary EEG signals at microvolt levels. The primary components of the proposed setup are the wireless power transmission unit, which consists of a power amplifier, highly efficient resonant-inductive link, rectification, regulation, and power management units, as well as the analog front end, which consists of an analog to digital converter, pre-amplification unit, filtering unit, host microprocessor, and the wireless communication unit. These must all be compatible with the rest of the system and must use the least amount of power possible while minimizing the presence of noise and the attenuation of the recorded signal A highly efficient resonant-inductive coupling link is developed to decrease power transmission dissipation. Magnetized materials were utilized to steer electromagnetic flux and decrease route and medium loss while transmitting the required energy with low dissipation. Signal pre-amplification is handled by the front-end active electrodes. Standard bio-amplifier design approaches are combined to accomplish this purpose, and a thorough investigation of the optimum ADC, microcontroller, and transceiver units has been carried out. We can minimize overall system weight and power consumption by employing battery-less and cable-free EEG readout system designs, consequently giving patients more comfort and freedom of movement. Similarly, the solutions are designed to match the performance of medical-grade equipment. The captured electrical impulses using the proposed setup can be stored for various uses, including classification, prediction, 3D source localization, and for monitoring and diagnosing different brain disorders. All the proposed designs and supporting mathematical derivations were validated through empirical and software-simulated experiments. Many of the proposed designs, including the 3D head cap, the wireless power transmission unit, and the pre-amplification unit, are already fabricated, and the schematic circuits and simulation results were based on Spice, Altium, and high-frequency structure simulator (HFSS) software. The fully integrated head cap to be fabricated would require embedding the active electrodes into the 3D headset and applying current technological advances to miniaturize some of the design elements developed in this dissertation

    Energy Harvesters and Self-powered Sensors for Smart Electronics

    Get PDF
    This book is a printed edition of the Special Issue “Energy Harvesters and Self-Powered Sensors for Smart Electronics” that was published in Micromachines, which showcases the rapid development of various energy harvesting technologies and novel devices. In the current 5G and Internet of Things (IoT) era, energy demand for numerous and widely distributed IoT nodes has greatly driven the innovation of various energy harvesting technologies, providing key functionalities as energy harvesters (i.e., sustainable power supplies) and/or self-powered sensors for diverse IoT systems. Accordingly, this book includes one editorial and nine research articles to explore different aspects of energy harvesting technologies such as electromagnetic energy harvesters, piezoelectric energy harvesters, and hybrid energy harvesters. The mechanism design, structural optimization, performance improvement, and a wide range of energy harvesting and self-powered monitoring applications have been involved. This book can serve as a guidance for researchers and students who would like to know more about the device design, optimization, and applications of different energy harvesting technologies

    Study of an off-grid wireless sensors with Li-Ion battery and Giant Magnetostrisctive Material

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Development of a Base Station for a Control Center

    Get PDF
    In this thesis, the objective was to design a base station for a startup company as a compliment to their main product, a control center device. The thesis resulted in a prototype that worked as intended and it fulfilled all desired criteria; charging ability, mountable on walls and placeable on flat horizontal surfaces. The prototype is divided into two parts: One unit, the station, and one unit that is designed as a shell for the control center. The latter allows the control center to receive charging, be placed easily on the station and allow it to stand on a flat horizontal surface. The company is very pleased with the results and looks forward for further development. Before generating any concepts, customer needs were identified through interviews from potential customers and lead users. The interviews got interpreted and evaluated which resulted in six complete product concepts. One of the concepts was chosen the best with highest score and also received the most positive feedback from the company. A prototype was built to represent the winning concept as close to a real product as possible. It included enough working parts to be able to prove the concept and give a better understanding of the product. Tests were made during the development process to make sure that everything worked properly. The thesis was completed successfully and satisfied both the development team and the company.In this thesis, the objective was to design a base station for a startup company as a compliment to their main product, a control center device. The thesis resulted in a prototype that worked as intended and it fulfilled all desired criteria; charging ability, mountable on walls and placeable on flat horizontal surfaces. The prototype is divided into two parts: One unit, the station, and one unit that is designed as a shell for the control center. The latter allows the control center to receive charging, be placed easily on the station and allow it to stand on a flat horizontal surface. The company is very pleased with the results and looks forward for further development. Before generating any concepts, customer needs were identified through interviews from potential customers and lead users. The interviews got interpreted and evaluated which resulted in six complete product concepts. One of the concepts was chosen the best with highest score and also received the most positive feedback from the company. A prototype was built to represent the winning concept as close to a real product as possible. It included enough working parts to be able to prove the concept and give a better understanding of the product. Tests were made during the development process to make sure that everything worked properly. The thesis was completed successfully and satisfied both the development team and the company

    Advance in Energy Harvesters/Nanogenerators and Self-Powered Sensors

    Get PDF
    This reprint is a collection of the Special Issue "Advance in Energy Harvesters/Nanogenerators and Self-Powered Sensors" published in Nanomaterials, which includes one editorial, six novel research articles and four review articles, showcasing the very recent advances in energy-harvesting and self-powered sensing technologies. With its broad coverage of innovations in transducing/sensing mechanisms, material and structural designs, system integration and applications, as well as the timely reviews of the progress in energy harvesting and self-powered sensing technologies, this reprint could give readers an excellent overview of the challenges, opportunities, advancements and development trends of this rapidly evolving field
    corecore