4 research outputs found

    3D Printing Magnetophoretic Displays

    Full text link
    We present a pipeline for printing interactive and always-on magnetophoretic displays using affordable Fused Deposition Modeling (FDM) 3D printers. Using our pipeline, an end-user can convert the surface of a 3D shape into a matrix of voxels. The generated model can be sent to an FDM 3D printer equipped with an additional syringe-based injector. During the printing process, an oil and iron powder-based liquid mixture is injected into each voxel cell, allowing the appearance of the once-printed object to be editable with external magnetic sources. To achieve this, we made modifications to the 3D printer hardware and the firmware. We also developed a 3D editor to prepare printable models. We demonstrate our pipeline with a variety of examples, including a printed Stanford bunny with customizable appearances, a small espresso mug that can be used as a post-it note surface, a board game figurine with a computationally updated display, and a collection of flexible wearable accessories with editable visuals

    AirLogic:Embedding Pneumatic Computation and I/O in 3D Models to Fabricate Electronics-Free Interactive Objects

    Get PDF
    Researchers have developed various tools and techniques towards the vision of on-demand fabrication of custom, interactive devices. Recentwork has 3D-printed artefacts like speakers, electromagnetic actuators, and hydraulic robots. However, these are non-trivial to instantiate as they require post-fabrication mechanical- or electronic assembly. We introduce AirLogic: a technique to create electronics-free, interactive objects by embedding pneumatic input, logic processing, and output widgets in 3D-printable models. AirLogic devices can perform basic computation on user inputs and create visible, audible, or haptic feedback; yet they do not require electronic circuits, physical assembly, or resetting between uses. Our library of 13 exemplar widgets can embed AirLogic-style computational capabilities in existing 3D models. We evaluate our widgets' performance-quantifying the loss of airfow (1) in each widget type, (2) based on printing orientation, and (3) from internal object geometry. Finally, we present fve applications that illustrate AirLogic's potential

    Digital fabrication of custom interactive objects with rich materials

    Get PDF
    As ubiquitous computing is becoming reality, people interact with an increasing number of computer interfaces embedded in physical objects. Today, interaction with those objects largely relies on integrated touchscreens. In contrast, humans are capable of rich interaction with physical objects and their materials through sensory feedback and dexterous manipulation skills. However, developing physical user interfaces that offer versatile interaction and leverage these capabilities is challenging. It requires novel technologies for prototyping interfaces with custom interactivity that support rich materials of everyday objects. Moreover, such technologies need to be accessible to empower a wide audience of researchers, makers, and users. This thesis investigates digital fabrication as a key technology to address these challenges. It contributes four novel design and fabrication approaches for interactive objects with rich materials. The contributions enable easy, accessible, and versatile design and fabrication of interactive objects with custom stretchability, input and output on complex geometries and diverse materials, tactile output on 3D-object geometries, and capabilities of changing their shape and material properties. Together, the contributions of this thesis advance the fields of digital fabrication, rapid prototyping, and ubiquitous computing towards the bigger goal of exploring interactive objects with rich materials as a new generation of physical interfaces.Computer werden zunehmend in GerĂ€ten integriert, mit welchen Menschen im Alltag interagieren. Heutzutage basiert diese Interaktion weitgehend auf Touchscreens. Im Kontrast dazu steht die reichhaltige Interaktion mit physischen Objekten und Materialien durch sensorisches Feedback und geschickte Manipulation. Interfaces zu entwerfen, die diese FĂ€higkeiten nutzen, ist allerdings problematisch. HierfĂŒr sind Technologien zum Prototyping neuer Interfaces mit benutzerdefinierter InteraktivitĂ€t und KompatibilitĂ€t mit vielfĂ€ltigen Materialien erforderlich. Zudem sollten solche Technologien zugĂ€nglich sein, um ein breites Publikum zu erreichen. Diese Dissertation erforscht die digitale Fabrikation als SchlĂŒsseltechnologie, um diese Probleme zu adressieren. Sie trĂ€gt vier neue Design- und FabrikationsansĂ€tze fĂŒr das Prototyping interaktiver Objekte mit reichhaltigen Materialien bei. Diese ermöglichen einfaches, zugĂ€ngliches und vielseitiges Design und Fabrikation von interaktiven Objekten mit individueller Dehnbarkeit, Ein- und Ausgabe auf komplexen Geometrien und vielfĂ€ltigen Materialien, taktiler Ausgabe auf 3D-Objektgeometrien und der FĂ€higkeit ihre Form und Materialeigenschaften zu Ă€ndern. Insgesamt trĂ€gt diese Dissertation zum Fortschritt der Bereiche der digitalen Fabrikation, des Rapid Prototyping und des Ubiquitous Computing in Richtung des grĂ¶ĂŸeren Ziels, der Exploration interaktiver Objekte mit reichhaltigen Materialien als eine neue Generation von physischen Interfaces, bei

    Becoming Travelers:Reflecting on the Emerging Practices of Sample Making in Digital Craftsmanship

    Get PDF
    corecore