8 research outputs found

    Ultra-low power IoT applications: from transducers to wireless protocols

    Get PDF
    This dissertation aims to explore Internet of Things (IoT) sensor nodes in various application scenarios with different design requirements. The research provides a comprehensive exploration of all the IoT layers composing an advanced device, from transducers to on-board processing, through low power hardware schemes and wireless protocols for wide area networks. Nowadays, spreading and massive utilization of wireless sensor nodes pushes research and industries to overcome the main limitations of such constrained devices, aiming to make them easily deployable at a lower cost. Significant challenges involve the battery lifetime that directly affects the device operativity and the wireless communication bandwidth. Factors that commonly contrast the system scalability and the energy per bit, as well as the maximum coverage. This thesis aims to serve as a reference and guideline document for future IoT projects, where results are structured following a conventional development pipeline. They usually consider communication standards and sensing as project requirements and low power operation as a necessity. A detailed overview of five leading IoT wireless protocols, together with custom solutions to overcome the throughput limitations and decrease the power consumption, are some of the topic discussed. Low power hardware engineering in multiple applications is also introduced, especially focusing on improving the trade-off between energy, functionality, and on-board processing capabilities. To enhance these features and to provide a bottom-top overview of an IoT sensor node, an innovative and low-cost transducer for structural health monitoring is presented. Lastly, the high-performance computing at the extreme edge of the IoT framework is addressed, with special attention to image processing algorithms running on state of the art RISC-V architecture. As a specific deployment scenario, an OpenCV-based stack, together with a convolutional neural network, is assessed on the octa-core PULP SoC

    Tuning the Computational Effort: An Adaptive Accuracy-aware Approach Across System Layers

    Get PDF
    This thesis introduces a novel methodology to realize accuracy-aware systems, which will help designers integrate accuracy awareness into their systems. It proposes an adaptive accuracy-aware approach across system layers that addresses current challenges in that domain, combining and tuning accuracy-aware methods on different system layers. To widen the scope of accuracy-aware computing including approximate computing for other domains, this thesis presents innovative accuracy-aware methods and techniques for different system layers. The required tuning of the accuracy-aware methods is integrated into a configuration layer that tunes the available knobs of the accuracy-aware methods integrated into a system

    Electronic Systems with High Energy Efficiency for Embedded Computer Vision

    Get PDF
    Electronic systems are now widely adopted in everyday use. Moreover, nowadays there is an extensive use of embedded wearable and portable devices from industrial to consumer applications. The growing demand of embedded devices and applications has opened several new research fields due to the need of low power consumption and real time responsiveness. Focusing on this class of devices, computer vision algorithms are a challenging application target. In embedded computer vision hardware and software design have to interact to meet application specific requirements. The focus of this thesis is to study computer vision algorithms for embedded systems. The presented work starts presenting a novel algorithm for an IoT stationary use case targeting a high-end embedded device class, where power can be supplied to the platform through wires. Moreover, further contributions focus on algorithmic design and optimization on low and ultra-low power devices. Solutions are presented to gesture recognition and context change detection for wearable devices, focusing on first person wearable devices (Ego-Centric Vision), with the aim to exploit more constrained systems in terms of available power budget and computational resources. A novel gesture recognition algorithm is presented that improves state of art approaches. We then demonstrate the effectiveness of low resolution images exploitation in context change detection with real world ultra-low power imagers. The last part of the thesis deals with more flexible software models to support multiple applications linked at runtime and executed on Cortex-M device class, supporting critical isolation features typical of virtualization-ready CPUs on low-cost low-power microcontrollers and covering some defects in security and deployment capabilities of current firmwares

    Digital CMOS ISFET architectures and algorithmic methods for point-of-care diagnostics

    Get PDF
    Over the past decade, the surge of infectious diseases outbreaks across the globe is redefining how healthcare is provided and delivered to patients, with a clear trend towards distributed diagnosis at the Point-of-Care (PoC). In this context, Ion-Sensitive Field Effect Transistors (ISFETs) fabricated on standard CMOS technology have emerged as a promising solution to achieve a precise, deliverable and inexpensive platform that could be deployed worldwide to provide a rapid diagnosis of infectious diseases. This thesis presents advancements for the future of ISFET-based PoC diagnostic platforms, proposing and implementing a set of hardware and software methodologies to overcome its main challenges and enhance its sensing capabilities. The first part of this thesis focuses on novel hardware architectures that enable direct integration with computational capabilities while providing pixel programmability and adaptability required to overcome pressing challenges on ISFET-based PoC platforms. This section explores oscillator-based ISFET architectures, a set of sensing front-ends that encodes the chemical information on the duty cycle of a PWM signal. Two initial architectures are proposed and fabricated in AMS 0.35um, confirming multiple degrees of programmability and potential for multi-sensing. One of these architectures is optimised to create a dual-sensing pixel capable of sensing both temperature and chemical information on the same spatial point while modulating this information simultaneously on a single waveform. This dual-sensing capability, verified in silico using TSMC 0.18um process, is vital for DNA-based diagnosis where protocols such as LAMP or PCR require precise thermal control. The COVID-19 pandemic highlighted the need for a deliverable diagnosis that perform nucleic acid amplification tests at the PoC, requiring minimal footprint by integrating sensing and computational capabilities. In response to this challenge, a paradigm shift is proposed, advocating for integrating all elements of the portable diagnostic platform under a single piece of silicon, realising a ``Diagnosis-on-a-Chip". This approach is enabled by a novel Digital ISFET Pixel that integrates both ADC and memory with sensing elements on each pixel, enhancing its parallelism. Furthermore, this architecture removes the need for external instrumentation or memories and facilitates its integration with computational capabilities on-chip, such as the proposed ARM Cortex M3 system. These computational capabilities need to be complemented with software methods that enable sensing enhancement and new applications using ISFET arrays. The second part of this thesis is devoted to these methods. Leveraging the programmability capabilities available on oscillator-based architectures, various digital signal processing algorithms are implemented to overcome the most urgent ISFET non-idealities, such as trapped charge, drift and chemical noise. These methods enable fast trapped charge cancellation and enhanced dynamic range through real-time drift compensation, achieving over 36 hours of continuous monitoring without pixel saturation. Furthermore, the recent development of data-driven models and software methods open a wide range of opportunities for ISFET sensing and beyond. In the last section of this thesis, two examples of these opportunities are explored: the optimisation of image compression algorithms on chemical images generated by an ultra-high frame-rate ISFET array; and a proposed paradigm shift on surface Electromyography (sEMG) signals, moving from data-harvesting to information-focused sensing. These examples represent an initial step forward on a journey towards a new generation of miniaturised, precise and efficient sensors for PoC diagnostics.Open Acces

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering

    Biomedical Engineering

    Get PDF
    Biomedical engineering is currently relatively wide scientific area which has been constantly bringing innovations with an objective to support and improve all areas of medicine such as therapy, diagnostics and rehabilitation. It holds a strong position also in natural and biological sciences. In the terms of application, biomedical engineering is present at almost all technical universities where some of them are targeted for the research and development in this area. The presented book brings chosen outputs and results of research and development tasks, often supported by important world or European framework programs or grant agencies. The knowledge and findings from the area of biomaterials, bioelectronics, bioinformatics, biomedical devices and tools or computer support in the processes of diagnostics and therapy are defined in a way that they bring both basic information to a reader and also specific outputs with a possible further use in research and development

    Teaching/Learning Physics: Integrating Research into Practice

    Get PDF
    The GIREP-MPTL International conference on Teaching/Learning Physics: Integrating Research into Practice [GIREP-MPTL 2014] was held from 7 to 12 July 2014 at the University of Palermo, Italy. The conference has been organised by the Groupe International de Recherche sur l’Enseignement de la Physique [GIREP] and the Multimedia in Physics Teaching and Learning [MPTL] group and it has been sponsored by the International Commission on Physics Education [ICPE] – Commission 14 of the International Union for Pure and Applied Physics [IUPAP], the European Physical Society – Physics Education Division [EPS-PED], the Latin American Physics Education Network [LAPEN] and the Società Italiana di Fisica [SIF]. The theme of the conference, Teaching/Learning Physics: Integrating Research into Practice, underlines aspects of great relevance in contemporary science education. In fact, during the last few years, evidence based Physics Education Research provided results concerning the ways and strategies to improve student conceptual understanding, interest in Physics, epistemological awareness and insights for the construction of a scientific citizenship. However, Physics teaching practice seems resistant to adopting adapting these findings to their own situation and new research based curricula find difficulty in affirming and spread, both at school and university levels. The conference offered an opportunity for in-depth discussions of this apparently wide-spread tension in order to find ways to do better. The purpose of the GIREP-MPTL 2014 was to bring together people working in physics education research and in physics education at schools from all over the world to allow them to share research results and exchange their experience. About 300 teachers, educators, and researchers, from all continents and 45 countries have attended the Conference contributing with 177 oral presentations, 15 workshops, 11 symposia, and around 60 poster presentations, together with 11 keynote addresses (general talks). After the conference, 147 papers have been submitted for the GIREP-MPTL 2014 International Conference proceedings. Each paper has been reviewed by at least two reviewers, from countries that are different to those of the authors and on the basis of criteria described on the Conference web site. Papers were subsequently revised by authors according to reviewers’ comments and the accepted papers are reported in this book, divided in 8 Sections on the basis of the keywords suggested by authors. The other book section (actually, the first one) contains the papers that six of the keynote talkers sent for publication in this Proceedings Book. We would like to thank all the authors that contributed with their papers to the realization of this book and all the referees that with their criticism helped authors to improve the quality of the papers

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen
    corecore