17 research outputs found

    A mixed-signal early vision chip with embedded image and programming memories and digital I/O

    Get PDF
    From a system level perspective, this paper presents a 128 × 128 flexible and reconfigurable Focal-Plane Analog Programmable Array Processor, which has been designed as a single chip in a 0.35μm standard digital 1P-5M CMOS technology. The core processing array has been designed to achieve high-speed of operation and large-enough accuracy (∼ 7bit) with low power consumption. The chip includes on-chip program memory to allow for the execution of complex, sequential and/or bifurcation flow image processing algorithms. It also includes the structures and circuits needed to guarantee its embedding into conventional digital hosting systems: external data interchange and control are completely digital. The chip contains close to four million transistors, 90% of them working in analog mode. The chip features up to 330GOPs (Giga Operations per second), and uses the power supply (180GOP/Joule) and the silicon area (3.8 GOPS/mm2) efficiently, as it is able to maintain VGA processing throughputs of 100Frames/s with about 15 basic image processing tasks on each frame

    A versatile sensor interface for programmable vision systems-on-chip

    Get PDF
    This paper describes an optical sensor interface designed for a programmable mixed-signal vision chip. This chip has been designed and manufactured in a standard 0.35μm n-well CMOS technology with one poly layer and five metal layers. It contains a digital shell for control and data interchange, and a central array of 128 × 128 identical cells, each cell corresponding to a pixel. Die size is 11.885 × 12.230mm2 and cell size is 75.7μm × 73.3μm. Each cell contains 198 transistors dedicated to functions like processing, storage, and sensing. The system is oriented to real-time, single-chip image acquisition and processing. Since each pixel performs the basic functions of sensing, processing and storage, data transferences are fully parallel (image-wide). The programmability of the processing functions enables the realization of complex image processing functions based on the sequential application of simpler operations. This paper provides a general overview of the system architecture and functionality, with special emphasis on the optical interface.European Commission IST-1999-19007Office of Naval Research (USA) N00014021088

    Three-Dimensional Processing-In-Memory-Architectures: A Holistic Tool For Modeling And Simulation

    Get PDF
    Die gemeinhin als Memory Wall bekannte, sich stetig weitende Leistungslücke zwischen Prozessor- und Speicherarchitekturen erfordert neue Konzepte, um weiterhin eine Skalierung der Rechenleistung zu ermöglichen. Da Speicher als die Beschränkung innerhalb einer Von-Neumann-Architektur identifiziert wurden, widmet sich die Arbeit dieser Problemstellung. Obgleich dreidimensionale Speicher zu einer Linderung der Memory Wall beitragen können, sind diese alleinig für die zukünftige Skalierung ungenügend. Aufgrund höherer Effizienzen stellt die Integration von Rechenkapazität in den Speicher (Processing-In-Memory, PIM) ein vielversprechender Ausweg dar, jedoch existiert ein Mangel an PIM-Simulationsmodellen. Daher wurde ein flexibles Simulationswerkzeug für dreidimensionale Speicherstapel geschaffen, welches zur Modellierung von dreidimensionalen PIM erweitert wurde. Dieses kann Speicherstapel wie etwa Hybrid Memory Cube standardkonform simulieren und bietet zugleich eine hohe Genauigkeit indem auf elementaren Datenpaketen in Kombination mit dem Hardware validierten Simulator BOBSim modelliert wird. Ein eigens entworfener Simulationstaktbaum ermöglicht zugleich eine schnelle Ausführung. Messungen weisen im funktionalen Modus eine 100-fache Beschleunigung auf, wohingegen eine Verdoppelung der Ausführungsgeschwindigkeit mit Taktgenauigkeit erzielt wird. Anhand eines eigens implementierten, binärkompatiblen GPU-Beschleunigers wird die Modellierung einer vollständig dreidimensionalen PIM-Architektur demonstriert. Dabei orientieren sich die maximalen Hardwareressourcen an einem PIM-Beschleuniger aus der Literatur. Evaluiert wird einerseits das GPU-Simulationsmodell eigenständig, andererseits als PIM-Verbund jeweils mit Hilfe einer repräsentativ gewählten, speicherbeschränkten geophysikalischen Bildverarbeitung. Bei alleiniger Betrachtung des GPU-Simulationsmodells weist dieses eine signifikant gesteigerte Simulationsgeschwindigkeit auf, bei gleichzeitiger Abweichung von 6% gegenüber dem Verilator-Modell. Nachfolgend werden innerhalb dieser Arbeit unterschiedliche Konfigurationen des integrierten PIM-Beschleunigers evaluiert. Je nach gewählter Konfiguration kann der genutzte Algorithmus entweder bis zu 140GFLOPS an tatsächlicher Rechenleistung abrufen oder eine maximale Recheneffizienz von synthetisch 30% bzw. real 24,5% erzielen. Letzteres stellt eine Verdopplung des Stands der Technik dar. Eine anknüpfende Diskussion erläutert eingehend die Resultate.The steadily widening performance gap between processor- and memory-architectures - commonly known as the Memory Wall - requires novel concepts to achieve further scaling in processing performance. As memories were identified as the limitation within a Von-Neumann-architecture, this work addresses this constraining issue. Although three-dimensional memories alleviate the effects of the Memory Wall, the sole utilization of such memories would be insufficient. Due to higher efficiencies, the integration of processing capacity into memories (so-called Processing-In-Memory, PIM) depicts a promising alternative. However, a lack of PIM simulation models still remains. As a consequence, a flexible simulation tool for three-dimensional stacked memories was established, which was extended for modeling three-dimensional PIM architectures. This tool can simulate stacked memories such as Hybrid Memory Cube standard-compliant and simultaneously offers high accuracy by modeling on elementary data packets (FLIT) in combination with the hardware validated BOBSim simulator. To this, a specifically designed simulation clock tree enables an rapid simulation execution. A 100x speed up in simulation execution can be measured while utilizing the functional mode, whereas a 2x speed up is achieved during clock-cycle accuracy mode. With the aid of a specifically implemented, binary compatible GPU accelerator and the established tool, the modeling of a holistic three-dimensional PIM architecture is demonstrated within this work. Hardware resources used were constrained by a PIM architecture from literature. A representative, memory-bound, geophysical imaging algorithm was leveraged to evaluate the GPU model as well as the compound PIM simulation model. The sole GPU simulation model depicts a significantly improved simulation performance with a deviation of 6% compared to a Verilator model. Subsequently, various PIM accelerator configurations with the integrated GPU model were evaluated. Depending on the chosen PIM configuration, the utilized algorithm achieves 140GFLOPS of processing performance or a maximum computing efficiency of synthetically 30% or realistically 24.5%. The latter depicts a 2x improvement compared to state-of-the-art. A following discussion showcases the results in depth

    Management of Technological Innovation in Developing and Developed Countries

    Get PDF
    It is widely accepted that technology is one of the forces driving economic growth. Although more and more new technologies have emerged, various evidence shows that their performances were not as high as expected. In both academia and practice, there are still many questions about what technologies to adopt and how to manage these technologies. The 15 articles in this book aim to look into these questions. There are quite many features in this book. Firstly, the articles are from both developed countries and developing countries in Asia, Africa and South and Middle America. Secondly, the articles cover a wide range of industries including telecommunication, sanitation, healthcare, entertainment, education, manufacturing, and financial. Thirdly, the analytical approaches are multi-disciplinary, ranging from mathematical, economic, analytical, empirical and strategic. Finally, the articles study both public and private organizations, including the service industry, manufacturing industry, and governmental organizations. Given its wide coverage and multi-disciplines, the book may be useful for both academic research and practical management

    Book of abstracts of the 10th International Chemical and Biological Engineering Conference: CHEMPOR 2008

    Get PDF
    This book contains the extended abstracts presented at the 10th International Chemical and Biological Engineering Conference - CHEMPOR 2008, held in Braga, Portugal, over 3 days, from the 4th to the 6th of September, 2008. Previous editions took place in Lisboa (1975, 1889, 1998), Braga (1978), Póvoa de Varzim (1981), Coimbra (1985, 2005), Porto (1993), and Aveiro (2001). The conference was jointly organized by the University of Minho, “Ordem dos Engenheiros”, and the IBB - Institute for Biotechnology and Bioengineering with the usual support of the “Sociedade Portuguesa de Química” and, by the first time, of the “Sociedade Portuguesa de Biotecnologia”. Thirty years elapsed since CHEMPOR was held at the University of Minho, organized by T.R. Bott, D. Allen, A. Bridgwater, J.J.B. Romero, L.J.S. Soares and J.D.R.S. Pinheiro. We are fortunate to have Profs. Bott, Soares and Pinheiro in the Honor Committee of this 10th edition, under the high Patronage of his Excellency the President of the Portuguese Republic, Prof. Aníbal Cavaco Silva. The opening ceremony will confer Prof. Bott with a “Long Term Achievement” award acknowledging the important contribution Prof. Bott brought along more than 30 years to the development of the Chemical Engineering science, to the launch of CHEMPOR series and specially to the University of Minho. Prof. Bott’s inaugural lecture will address the importance of effective energy management in processing operations, particularly in the effectiveness of heat recovery and the associated reduction in greenhouse gas emission from combustion processes. The CHEMPOR series traditionally brings together both young and established researchers and end users to discuss recent developments in different areas of Chemical Engineering. The scope of this edition is broadening out by including the Biological Engineering research. One of the major core areas of the conference program is life quality, due to the importance that Chemical and Biological Engineering plays in this area. “Integration of Life Sciences & Engineering” and “Sustainable Process-Product Development through Green Chemistry” are two of the leading themes with papers addressing such important issues. This is complemented with additional leading themes including “Advancing the Chemical and Biological Engineering Fundamentals”, “Multi-Scale and/or Multi-Disciplinary Approach to Process-Product Innovation”, “Systematic Methods and Tools for Managing the Complexity”, and “Educating Chemical and Biological Engineers for Coming Challenges” which define the extended abstracts arrangements along this book. A total of 516 extended abstracts are included in the book, consisting of 7 invited lecturers, 15 keynote, 105 short oral presentations given in 5 parallel sessions, along with 6 slots for viewing 389 poster presentations. Full papers are jointly included in the companion Proceedings in CD-ROM. All papers have been reviewed and we are grateful to the members of scientific and organizing committees for their evaluations. It was an intensive task since 610 submitted abstracts from 45 countries were received. It has been an honor for us to contribute to setting up CHEMPOR 2008 during almost two years. We wish to thank the authors who have contributed to yield a high scientific standard to the program. We are thankful to the sponsors who have contributed decisively to this event. We also extend our gratefulness to all those who, through their dedicated efforts, have assisted us in this task. On behalf of the Scientific and Organizing Committees we wish you that together with an interesting reading, the scientific program and the social moments organized will be memorable for all.Fundação para a Ciência e a Tecnologia (FCT
    corecore