2 research outputs found

    A low-voltage CMOS-compatible time-domain photodetector, device & front end electronics

    Get PDF
    During the last decades, the usage of silicon photodetectors, both as stand-alone sensor or integrated in arrays, grew tremendously. They are now found in almost any application and any market range, from leisure products to high-end scientific apparatuses, including, among others, industrial, automotive, and medical equipment. The impressive growth in photodetector applications is closely linked to the development of CMOS technology, which now offers inexpensive and efficient analog and digi-tal signal processing capabilities. Detectors are often integrated with their respective front end and application-specific digital circuit on the same silicon die, forming complete systems on chip. In some cases the detector itself is not on the same chip but often part of the same package. However, this trend of co-integration of analog front end and digital circuits complicates the design of the analog part. The ever-decreasing supply voltage and the smaller transistors in advanced processes (which are driven by the development of digital cir-cuits) negatively impact the performance of the analog structures and complicates their design. For photodetector systems, the effect most importantly translates into a degradation of dynamic range and signal-to-noise ratio. One way to circumvent the problem of low supply voltages is to shift the operation from voltage domain to time domain. By doing so, the signal is no longer constrained by the supply rails and analog amplification is avoided. The signal takes the form of a time-based modulation, such as pulse-width modulation or pulse-frequency modulation. Another advantage is that the output signal of a time-domain photodetection system is directly interfaceable with digital circuits. In this work, a new type of CMOS-compatible photodetector displaying intrinsic light-to-time conversion is proposed. Its physical structure consists of a MOS gate interleaved with a PN junction. The MOS structure is acting as a photogate. The depletion region shrinks when photogenerated carriers fill the potential well. At some point, the anode of the PN structure is de-isolated from the rest of the detector and triggers a positive-feedback effect that leads to a very steep current increase through the PN-junction. This translates into a signal of very high amplitude and independent from light-intensity, which can be almost directly interfaced with digital circuits. This simplifies the front end circuit compared to photodiode-based systems. The physical behavior of the device is analyzed with the help of TCAD simulations and simple behavioral and shot-noise models are proposed. The device has been co-integrated with its driver and front end circuit in a standard CMOS process and its characteristics have been measured with a custom-made measurement system. The effect of bias parameters on the performance of the sensor are also analyzed. The limitations of the device are discussed, the most important ones being dark current and linearity. Techno-logical solutions, such as the implementation of the detector on Silicon-on-Insulator technology, are proposed to overcome the limitations. Finally, some application demonstrators have been realized. Other applications that could benefit from the detector are suggested, such as digital applications taking advantage of the latching behavior of the device, and a Photoplethysmography (PPG) system that uses a PLL-based control loop to minimize the emitting LED-current

    Analysis and design of a wide dynamic range pulse-frequency modulation CMOS image sensor

    Get PDF
    Complementary Metal-Oxide Semiconductor (CMOS) image sensor is the dominant electronic imaging device in many application fields, including the mobile or portable devices, teleconference cameras, surveillance and medical imaging sensors. Wide dynamic range (WDR) imaging is of interest particular, demonstrating a large-contrast imaging range of the sensor. As of today, different approaches have been presented to provide solutions for this purpose, but there exists various trade-offs among these designs, which limit the number of applications. A pulse-frequency modulation (PFM) pixel offers the possibility to outperform existing designs in WDR imaging applications, however issues such as uniformity and cost have to be carefully handled to make it practical for different purposes. In addition, a complete evaluation of the sensor performance has to be executed prior to fabrication in silicon technology. A thorough investigation of WDR image sensor based on the PFM pixel is performed in this thesis. Starting with the analysis, modeling, and measurements of a PFM pixel, the details of every particular circuit operation are presented. The causes of dynamic range (DR) limitations and signal nonlinearity are identified, and noise measurement is also performed, to guide future design strategies. We present the design of an innovative double-delta compensating (DDC) technique which increases the sensor uniformity as well as DR. This technique achieves performance optimization of the PFM pixel with a minimal cost an improved linearity, and is carefully simulated to demonstrate its feasibility. A quad-sampling technique is also presented with the cooperation of pixel and column circuits to generate a WDR image sensor with a reduced cost for the pixel. This method, which is verified through the field-programmable gate array (FPGA) implementation, saves considerable area in the pixel and employs the maximal DR that a PFM pixel provides. A complete WDR image sensor structure is proposed to evaluate the performance and feasibility of fabrication in silicon technology. The plans of future work and possible improvements are also presented
    corecore