149 research outputs found

    Mechanisms of motor learning: by humans, for robots

    No full text
    Whenever we perform a movement and interact with objects in our environment, our central nervous system (CNS) adapts and controls the redundant system of muscles actuating our limbs to produce suitable forces and impedance for the interaction. As modern robots are increasingly used to interact with objects, humans and other robots, they too require to continuously adapt the interaction forces and impedance to the situation. This thesis investigated the motor mechanisms in humans through a series of technical developments and experiments, and utilized the result to implement biomimetic motor behaviours on a robot. Original tools were first developed, which enabled two novel motor imaging experiments using functional magnetic resonance imaging (fMRI). The first experiment investigated the neural correlates of force and impedance control to understand the control structure employed by the human brain. The second experiment developed a regressor free technique to detect dynamic changes in brain activations during learning, and applied this technique to investigate changes in neural activity during adaptation to force fields and visuomotor rotations. In parallel, a psychophysical experiment investigated motor optimization in humans in a task characterized by multiple error-effort optima. Finally a computational model derived from some of these results was implemented to exhibit human like control and adaptation of force, impedance and movement trajectory in a robot

    Medical robots for MRI guided diagnosis and therapy

    No full text
    Magnetic Resonance Imaging (MRI) provides the capability of imaging tissue with fine resolution and superior soft tissue contrast, when compared with conventional ultrasound and CT imaging, which makes it an important tool for clinicians to perform more accurate diagnosis and image guided therapy. Medical robotic devices combining the high resolution anatomical images with real-time navigation, are ideal for precise and repeatable interventions. Despite these advantages, the MR environment imposes constraints on mechatronic devices operating within it. This thesis presents a study on the design and development of robotic systems for particular MR interventions, in which the issue of testing the MR compatibility of mechatronic components, actuation control, kinematics and workspace analysis, and mechanical and electrical design of the robot have been investigated. Two types of robotic systems have therefore been developed and evaluated along the above aspects. (i) A device for MR guided transrectal prostate biopsy: The system was designed from components which are proven to be MR compatible, actuated by pneumatic motors and ultrasonic motors, and tracked by optical position sensors and ducial markers. Clinical trials have been performed with the device on three patients, and the results reported have demonstrated its capability to perform needle positioning under MR guidance, with a procedure time of around 40mins and with no compromised image quality, which achieved our system speci cations. (ii) Limb positioning devices to facilitate the magic angle effect for diagnosis of tendinous injuries: Two systems were designed particularly for lower and upper limb positioning, which are actuated and tracked by the similar methods as the first device. A group of volunteers were recruited to conduct tests to verify the functionality of the systems. The results demonstrate the clear enhancement of the image quality with an increase in signal intensity up to 24 times in the tendon tissue caused by the magic angle effect, showing the feasibility of the proposed devices to be applied in clinical diagnosis

    Soft Gloves: A Review on Recent Developments in Actuation, Sensing, Control and Applications

    Get PDF
    Interest in soft gloves, both robotic and haptic, has enormously grown over the past decade, due to their inherent compliance, which makes them particularly suitable for direct interaction with the human hand. Robotic soft gloves have been developed for hand rehabilitation, for ADLs assistance, or sometimes for both. Haptic soft gloves may be applied in virtual reality (VR) applications or to give sensory feedback in combination with prostheses or to control robots. This paper presents an updated review of the state of the art of soft gloves, with a particular focus on actuation, sensing, and control, combined with a detailed analysis of the devices according to their application field. The review is organized on two levels: a prospective review allows the highlighting of the main trends in soft gloves development and applications, and an analytical review performs an in-depth analysis of the technical solutions developed and implemented in the revised scientific research. Additional minor evaluations integrate the analysis, such as a synthetic investigation of the main results in the clinical studies and trials referred in literature which involve soft gloves

    Mutual interferences and design principles for mechatronic devices in magnetic resonance imaging

    Get PDF
    Purpose: Robotic and mechatronic devices that work compatibly with magnetic resonance imaging (MRI) are applied in diagnostic MRI, image-guided surgery, neurorehabilitation and neuroscience. MRI-compatible mechatronic systems must address the challenges imposed by the scanner's electromagnetic fields. We have developed objective quantitative evaluation criteria for device characteristics needed to formulate design guidelines that ensure MRI-compatibility based on safety, device functionality and image quality. Methods: The mutual interferences between an MRI system and mechatronic devices working in its vicinity are modeled and tested. For each interference, the involved components are listed, and a numerical measure for "MRI-compatibility” is proposed. These interferences are categorized into an MRI-compatibility matrix, with each element representing possible interactions between one part of the mechatronic system and one component of the electromagnetic fields. Based on this formulation, design principles for MRI-compatible mechatronic systems are proposed. Furthermore, test methods are developed to examine whether a mechatronic device indeed works without interferences within an MRI system. Finally, the proposed MRI-compatibility criteria and design guidelines have been applied to an actual design process that has been validated by the test procedures. Results: Objective and quantitative MRI-compatibility measures for mechatronic and robotic devices have been established. Applying the proposed design principles, potential problems in safety, device functionality and image quality can be considered in the design phase to ensure that the mechatronic system will fulfill the MRI-compatibility criteria. Conclusion: New guidelines and test procedures for MRI instrument compatibility provide a rational basis for design and evaluation of mechatronic devices in various MRI applications. Designers can apply these criteria and use the tests, so that MRI-compatibility results can accrue to build an experiential databas

    Design and control of an MRI compatible series elastic actuator

    Get PDF
    Bidirectional compatibility requirements with Magnetic Resonance Imaging (MRI) have limited the adaptation of rehabilitation robots for use in MRI machines. In this paper, we present the design and control of a Bowden cable-actuated, MRI-compatible series elastic actuator (SEA) that aims to fulfil the bidirectional compatibility requirements to the maximum extend. The proposed device is built using nonconductive diamagnetic MRI compatible materials, fiber optic sensing units and a Bowden cable based actuation, such that imaging artifacts created under strong magnetic field required for neuro-imaging are minimized. In particular, utilization of Bowden-cable transmission enables the placement of the conventional non-MRI compatible control/signal processing units and electric actuators outside the MRI room. This approach not only helps avoid the MR interference caused by these parts and eliminates safety hazards within the MRI room, but also ensures that the performance of the device is not affected by the strong magnetic field, resulting in ideal bidirectional MRI compatibility. Use of a custom-built fiber optic encoder together with nonconductive leaf spring based elastic element enables torque outputs of the device to be measured and used for closed-loop torque control, rendering the system into a series elastic actuator. The proposed MRI compatible SEA is easily customizable and can be used as the building block of higher degrees of freedom MRI compatible robotic devices. Current prototype is validated to administer continuous torques up to 2 Nm with a torque control bandwidth of 1 Hz and a torque sensing resolution of 0.05 Nm

    Application of ultrasonic motors to MR-compatible haptic interfaces

    Get PDF
    Functional Magnetic Resonance Imagery (fMRI) is an imaging technique allowing the observation of brain activity. Haptic interfaces can be used in conjunction with fMRI to stimulate the subject while measuring brain activity. Using robotic stimulation over conventional methods offers repeatability, flexibility and the possibility of logging of different experiment variables. Such system becomes a powerful tool for neuroscience study, diagnostic and rehabilitation. The MR scanner with its high magnetic fields and radio frequency pulses is a harsh environment for a robotic system. Robots that can operate safely and do not induce disturbances in the imaging of the scanner are qualified as MR-compatible. The actuation of these robots is an important issue. Electrical power brought to the actuator represents an important source of interferences with the scanner. Since electrical motors cannot be introduced in the MR room, haptic interfaces are conventionally remotely actuated over a long transmission with the actuators placed outside of the MR room. In particular cases, such as the study of finger motion, small haptic interfaces with limited force ranges are required. Remote actuation methods impose transmission lengths and means that cannot be reduced nor scaled down thus imposing a trade-off between performances and size reduction in these applications. This work investigates an alternative actuator that can achieve high-quality force-interactions with the fingers. The Ultrasonic Motor (USM) is MR-compatible and offers good performances. But it is not well suited for force-feedback and may be hazardous for the users. To address these issues, mechanical solutions are investigated by using an electrical analogy applied to mechanical systems. A novel actuation system using the USM as a power source and a clutch to control the output torque is proposed: the Hybrid USM Clutch Actuator (HUCA). The first prototype validates the different mechanical concepts developed in this work. The second, MR-compatible, integrates a clutch based on electrorheological fluids (ER). MR-compatibility has been validated and performances evaluated. Since the HUCA has the unique property of behaving both like a force source and a velocity source, dedicated control schemes have been developed to implement impedance and admittance force control. These enable the display of stiff walls and the rendering of a wide range of impedances thanks to the overlap of their range of displayable impedances. Compared to the hydrostatic transmission actuation, the HUCA shows higher performances and user safety. Furthermore, the powering through electrical wires allows developments of multi-DOF interfaces

    Robot-Assisted Rehabilitation of Forearm and Hand Function After Stroke

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore