20 research outputs found
Utilizing Unconventional CMOS Techniques for Low Voltage Low Power Analog Circuits Design for Biomedical Applications
Tato disertační práce se zabývá navržením nízkonapěťových, nízkopříkonových analogových obvodů, které používají nekonvenční techniky CMOS. Lékařská zařízení na bateriové napájení, jako systémy pro dlouhodobý fyziologický monitoring, přenosné systémy, implantovatelné systémy a systémy vhodné na nošení, musí být male a lehké. Kromě toho je nutné, aby byly tyto systémy vybaveny baterií s dlouhou životností. Z tohoto důvodu převládají v biomedicínských aplikacích tohoto typu nízkopříkonové integrované obvody. Nekonvenční techniky jako např. využití transistorů s řízeným substrátem (Bulk-Driven “BD”), s plovoucím hradlem (Floating-Gate “FG”), s kvazi plovoucím hradlem (Quasi-Floating-Gate “QFG”), s řízeným substrátem s plovoucím hradlem (Bulk-Driven Floating-Gate “BD-FG”) a s řízeným substrátem s kvazi plovoucím hradlem (Bulk-Driven Quasi-Floating-Gate “BD-QFG”), se v nedávné době ukázaly jako efektivní prostředek ke zjednodušení obvodového zapojení a ke snížení velikosti napájecího napětí směrem k prahovému napětí u tranzistorů MOS (MOST). V práci jsou podrobně představeny nejdůležitější charakteristiky nekonvenčních technik CMOS. Tyto techniky byly použity pro vytvoření nízko napěťových a nízko výkonových CMOS struktur u některých aktivních prvků, např. Operational Transconductance Amplifier (OTA) založené na BD, FG, QFG, a BD-QFG techniky; Tunable Transconductor založený na BD MOST; Current Conveyor Transconductance Amplifier (CCTA) založený na BD-QFG MOST; Z Copy-Current Controlled-Current Differencing Buffered Amplifier (ZC-CC-CDBA) založený na BD MOST; Winner Take All (WTA) and Loser Take All (LTA) založený na BD MOST; Fully Balanced Four-Terminal Floating Nullor (FBFTFN) založený na BD-QFG technice. Za účelem ověření funkčnosti výše zmíněných struktur, byly tyto struktury použity v několika aplikacích. Výkon navržených aktivních prvků a příkladech aplikací je ověřován prostřednictvím simulačních programů PSpice či Cadence za použití technologie 0.18 m CMOS.This doctoral thesis deals with designing ultra-low-voltage (LV) low-power (LP) analog circuits utilizing the unconventional CMOS techniques. Battery powered medical devices such as; long term physiological monitoring, portable, implantable, and wearable systems need to be small and lightweight. Besides, long life battery is essential need for these devices. Thus, low-power integrated circuits are always paramount in such biomedical applications. Recently, unconventional CMOS techniques i.e. Bulk-Driven (BD), Floating-Gate (FG), Quasi-Floating-Gate (QFG), Bulk-Driven Floating-Gate (BD-FG) and Bulk-Driven Quasi-Floating-Gate (BD-QFG) MOS transistors (MOSTs) have revealed as effective devices to reduce the circuit complexity and push the voltage supply of the circuit towards threshold voltage of the MOST. In this work, the most important features of the unconventional CMOS techniques are discussed in details. These techniques have been utilized to perform ultra-LV LP CMOS structures of several active elements i.e. Operational Transconductance Amplifier (OTA) based on BD, FG, QFG, and BD-QFG techniques; Tunable Transconductor based on BD MOST; Current Conveyor Transconductance Amplifier (CCTA) based on BD-QFG MOST; Z Copy-Current Controlled-Current Differencing Buffered Amplifier (ZC-CC-CDBA) based on BD MOST; Winner Take All (WTA) and Loser Take All (LTA) based on BD MOST; Fully Balanced Four-Terminal Floating Nullor (FBFTFN) based on BD-QFG technique. Moreover, to verify the workability of the proposed structures, they were employed in several applications. The performance of the proposed active elements and their applications were investigated through PSpice or Cadence simulation program using 0.18 m CMOS technology.
Design of a low-voltage CMOS RF receiver for energy harvesting sensor node
In this thesis a CMOS low-power and low-voltage RF receiver front-end is presented.
The main objective is to design this RF receiver so that it can be powered by a piezoelectric
energy harvesting power source, included in a Wireless Sensor Node application. For
this type of applications the major requirements are: the low-power and low-voltage
operation, the reduced area and cost and the simplicity of the architecture. The system
key blocks are the LNA and the mixer, which are studied and optimized with greater
detail, achieving a good linearity, a wideband operation and a reduced introduction of
noise.
A wideband balun LNA with noise and distortion cancelling is designed to work at
a 0.6 V supply voltage, in conjunction with a double-balanced passive mixer and subsequent
TIA block. The passive mixer operates in current mode, allowing a minimal
introduction of voltage noise and a good linearity.
The receiver analog front-end has a total voltage conversion gain of 31.5 dB, a 0.1 -
4.3 GHz bandwidth, an IIP3 value of -1.35 dBm, and a noise figure lower than 9 dB. The
total power consumption is 1.9 mW and the die area is 305x134.5  m2, using a standard
130 nm CMOS technology
New Possibilities In Low-voltage Analog Circuit Design Using Dtmos Transistors
(Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2013(PhD) -- İstanbul Technical University, Institute of Science and Technology, 2013Bu çalışmada DTMOS yaklaşımı çok düşük besleme gerilimlerinde çalışan çok düşük güç tüketimli devrelere başarıyla uygulanmıştır. Tasarlanan devreler arasında OTA, OP-AMP, CCII gibi analog aktif yapı blokları, çarpma devresi, sadece-MOS yapılar gibi devreler bulunmaktadır. Tasarlanan devreler SPICE benzetimleri ile doğrulanmıştır. İleri yönde gövde kutuplamaya bağlı olarak DTMOS transistorun yapısından kaynaklanan, efektif olarak düşük eşik gerilimli çalışma özelliği nedeniyle, çok düşük güç tüketimli ve çok düşük gerilimli devrelerde DTMOS yaklaşımının geçerli bir alternatif olduğu bu çalışmayla gösterilmiştir. DTMOS yaklaşımının geniş bir alanda çeşitlilik gösteren analog devre yapılarında çok düşük besleme gerilimlerinde bile kabul edilebilir bir performansla kullanılabileceği bulunmuştur.In this study, DTMOS approach to the design of ultra low-voltage and ultra low-power analog circuits, has been successfully applied to the circuits ranging from EEG filtering circuits, speech processing filters in hearing aids, multipliers, analog active building blocks: OTA, OP-AMP, CCII to MOS-only circuits. The proposed circuits are verified with SPICE simulations. It is found that in designing ultra low-voltage, ultra low-power analog circuits, DTMOS approach is a viable alternative due to its inherent characteristic of effective low threshold voltage behaviour under forward body bias. This approach can be applied to several analog application subjects with acceptable performance under even ultra low supply voltages.DoktoraPh
Design of a Low Voltage Class AB Variable Gain Amplifier (VGA)
A variable gain amplifier (VGA) is one of the most significant component in many applications such as analog to digital converter (ADC). In communication receiver, VGA is typically employed in a feedback loop to realize an automatic gain control (AGC), to provide constant signal power to baseband analog-to-digital converter (ADC) for unpredictable received signal strengths. Gain range, power consumption and bandwidth of ADC are strongly influenced by the performance of operational amplifier. VGA is the key element for amplifying process in ADC. However, current class AB VGA is experiencing the limit of bandwidth, which is not suitable for high speed automatic gain control AGC. In order to overcome these limitations a high linearity and wide bandwidth of VGA is indispensable. The aim of this research is to get higher gain and larger bandwidth for VGA. In this research, a low cost, low power voltage and wide bandwidth class AB VGA is designed to mitigate this constraint. Superiority of the proposed VGA has been confirmed by circuit simulation using CEDEC 0.18-μm CMOS process with the help of tools from Mentor Graphics in designing a 100-MHz VGA under 1V supply voltage draining total static power consumption less than 125uW. The results show that the circuit is able to work with high linearity and wide bandwidth by varying Rf and Rs. Therefore, the frequency response (Gain) and the wide bandwidth of this class AB VGA is better than previously reported class AB VGA. Consequently, this modified class AB VGA is appropriate for high speed applications
Design of A Low Voltage Class AB Variable Gain Amplifier (VGA)
A variable gain amplifier (VGA) is one of the most significant component in many applications such as analog to digital  converter  (ADC). In communication receiver, VGA is typically employed in a feedback loop to realize an automatic gain control (AGC), to provide constant signal power to baseband analog-to-digital converter (ADC) for unpredictable received signal strengths. Gain range, power consumption and bandwidth of ADC are strongly influenced by the performance of operational amplifier. VGA is the key element for amplifying process in ADC. However, current class AB VGA is experiencing the limit of bandwidth, which is not suitable for high speed automatic gain control AGC. In order to overcome these limitations a high linearity and wide bandwidth of VGA is indispensable. The aim of this research is to get higher gain and larger bandwidth for VGA. In this research, a low cost, low power voltage and wide bandwidth class AB VGA is designed to mitigate this constraint. Superiority of the proposed VGA has been confirmed by circuit simulation using CEDEC 0.18-μm CMOS process with the help of tools from Mentor Graphics in designing a 100-MHz VGA under 1V supply voltage draining total static power consumption less than 125uW. The results show that the circuit is able to work with high linearity and wide bandwidth by varying Rf and Rs.  Therefore, the frequency response (Gain) and the wide bandwidth of this class AB VGA is better than previously reported class AB VGA. Consequently, this modified class AB VGA is appropriate for high speed application
Voltage-Mode Elliptic Band-Pass Filter Based on Multiple-Input Transconductor
This paper presents a new voltage-mode elliptic band-pass filter based on a multiple-input transconductor (MI-OTA). The MI-OTA's structure employs the multiple-input MOS transistor technique that simply enables to increase the number of OTA's inputs without increasing the number of current branches or the differential pairs. The MI-OTA features high linearity over a wide input range with a compact and simple CMOS structure. From the advantage of multiple inputs, it enables to construct the arbitrarily summing and subtracting under the proposed voltage-mode filter design procedure. The filter is designed and simulated in Cadence environment using 0.18 mu m TSMC CMOS technology. The filter offers 72.9 dB dynamic range for 2 % total harmonic distortion (THD) for sine input signal of 0.5 Vpp @ 1kHz with voltage supply +/- 0.9V. The simulation results of the filter are in agreement with the RLC prototype. The experimental results using commercially available IC are also included to confirm the proposed filter that are in good agreement with the simulation results
Pseudo-three-stage Miller op-amp with enhanced small-signal and large-signal performance
A simple technique to implement highly power efficient class AB-AB Miller op-amps is presented in this paper. It uses a composite input stage with resistive local common mode feedback that provides class AB operation to the input stage and essentially enhances the op-amp's effective transconductance gain, the dc open-loop gain, the gain-bandwidth product, and slew rate with just moderate increase in power dissipation. The experimental results of op-amps in strong inversion and subthreshold fabricated in a 130-nm standard CMOS technology validate the proposed approach. The op-amp has 9 V·pF/μs·μW large-signal figure of merit (FOM) and 17 MHz · pF/μW small-signal FOM with 1.2-V supply voltage. In subthreshold, the op-amp has 10 V · pF/μs · μW large-signal FOM and 92 MHz · pF/μW small-signal FOM with 0.5-V supply voltage.This work was supported by Grant TEC2016-80396-
C2-R (AEI/FEDER)
DESIGN OF TWO STAGE BULK-DRIVEN OPERATIONAL TRANSCONDUCTANCE AMPLIFIER (OTA) WITH A HIGH GAIN FOR LOW VOLTAGE APPLICATION
An Operational Transconductance Amplifier (further abbreviated as OTA) is a voltage controlled current source used to produce an output current proportional to the input voltage. A schematic architecture for a 180nm OTA is presented in this thesis with the goal of improving the open-loop gain for a 0.9V supply voltage with a rail-to-rail bulk-driven input stage. Results show an open loop gain 97.14 dB with a power consumption of 3.33uW. An OTA with over 90 dB open loop gain and lower power consumption is highly suitable for low-voltage applications. The slew rate of the OTA is 0.05V/uS with a unity-gain bandwidth of 8.4MHz. A 10uA ideal bias current reference is utilized for the design. The phase margin is around 49.2 degrees.
The threshold voltage for a 180nm N-channel Metal Oxide Semiconductor (also known as NMOS) device is around 400mV which restricts the low voltage applications in most amplifier circuits. The fourth terminal (bulk) of the MOS device is utilized to optimize the voltage headroom (Vds). The bulk terminal uses a much lesser source to drain voltage than the gate-driven transistors, and the transistors remain ON with an input voltage as low as 0.1V. A bulk-driven input stage ensures the amplification in the subthreshold region (input signal less than the threshold voltage of the MOS device). However, even with the bulk input MOS device, a rail-to-rail input stage is employed to improve the dynamic range for the input signal from 0V to 0.9V with a supply voltage of 0.9V. The fluctuation in open loop gain concerning the change in input signal in the published research is because of the constant instability in the intrinsic transconductance of the input devices. A possible solution is presented in this thesis by adding a second dominant pole to the circuit (i.e., second stage for the OTA), which reduces the dependency of intrinsic transconductance (bulk-driven device) on the total open loop gain of the amplifier. Thus, a significant gain of 97.14 dB with minimal fluctuations is achieved. Furthermore, adding a second stage improves the gain by distributing the dependency of the gain due to the first stage to both poles in the circuit. Hence, the problem of fluctuating transconductance of the input stage is resolved by the constant intrinsic transconductance of the MOS near the second pole (M19).
To improve the gain, a folded cascoded amplifier connected with the input stage results in a better impedance (in the first stage) known as the gain stage. In the second stage, a large PMOS common source amplifier gives a good output current compared to the input stage to enhance the output swing and drive a purely capacitive load of 0.5pF. Furthermore, a miller capacitance is used to compensate for the frequency between the first and the second stage and improving the unity-gain bandwidth. An additional biasing circuit in the second stage amplifies the current output of the first stage and thus improving the slew rate of the entire device. In addition, the biasing circuit resolves the biasing issues for the second-stage common-source amplifier. It improves the output swing of the device to obtain a clean/undistorted output waveform.   All the simulations are carried out in the LTSpice simulation tool to test the waveforms and bode plot for open loop gain and phase margin (49.2 degrees) at different processes (slow, typical, and fast), input voltages (0-0.9V), supply voltage (0.8V, 0.9V, 1.0V) and temperatures (-10 to 100 degree C)
On-Chip Integrated Functional Near Infra-Red Spectroscopy (fNIRS) Photoreceiver for Portable Brain Imaging
RÉSUMÉ
L'imagerie cérébrale fonctionnelle utilisant la Spectroscopie Fonctionnelle Proche-Infrarouge (SFPI)
propose un outil portatif et non invasif de surveillance de l'oxygénation du sang. SFPI est une technique de
haute résolution temporelle non invasive, sûr, peu intrusive en temps réel et pour l'imagerie cérébrale à
long terme. Il permet de détecter des signaux hémodynamiques à la fois rapides et neuronaux ou lents. Outre les avantages importants des systèmes SFPI, ils souffrent encore de quelques inconvénients,
notamment d’une faible résolution spatiale, d’un bruit de niveau modérément élevé et d’une grande
sensibilité au mouvement. Afin de surmonter les limites des systèmes actuellement disponibles de SFPI non-portables, dans cette thèse, nous en avons introduit une nouvelle de faible puissance, miniaturisée sur une puce photodétecteur frontal destinée à des systèmes de SFPI portables. Elle contient du silicium
photodiode à avalanche (SiAPD), un amplificateur de transimpédance (TIA), et « Quench-Reset », circuits
mis en oeuvre en utilisant les technologies CMOS standards pour fonctionner dans les deux modes :
linéaire et Geiger. Ainsi, elle peut être appliquée pour les deux fNIRS : en onde continue (CW- SFPI) et
pour des applications de comptage de photon unique. Plusieurs SiAPDs ont été mises en oeuvre dans de nouvelles structures et formes (rectangulaires, octogonales, double APDs, imbriquées, netted, quadratiques et hexadecagonal) en utilisant différentes techniques de prévention de la dégradation de bord
prématurée. Les principales caractéristiques des SiAPDs sont validées et l'impact de chaque paramètre ainsi que les simulateurs de l'appareil (TCAD, COMSOL, etc) ont été étudiés sur la base de la simulation et de mesure des résultats. Proposées SiAPDs techniques d'exposition avec un gain de grande avalanche,
tension faible ventilation et une grande efficacité de détection des photons dans plus de faibles taux de comptage sombres. Trois nouveaux produits à haut gain, bande passante (GBW) et à faible bruit TIA sont introduits basés sur le concept de gain distribué, d’amplificateur logarithmique et sur le rejet automatique
du bruit pour être appliqué en mode de fonctionnement linéaire. Le TIA proposé offre une faible consommation, un gain de haute transimpédance, une bande passante ajustable et un très faible bruit
d'entrée et de sortie. Le nouveau circuit mixte trempe-reset (MQC) et un MQC contrôlable (CMQC)
frontaux offrent une faible puissance, une haute vitesse de comptage de photons avec un commandable de
temps de hold-off et temps de réinitialiser. La première intégration sur puce de SiAPDs avec TIA et Photon circuit de comptage a été démontrée et montre une amélioration de l'efficacité de la
photodétection, spécialement en ce qui concerne la sensibilité, la consommation d'énergie et le rapport signal sur bruit.----------ABSTRACT
Optical brain imaging using functional near infra-red spectroscopy (fNIRS) offers a direct and
noninvasive tool for monitoring of blood oxygenation. fNIRS is a noninvasive, safe, minimally
intrusive, and high temporal-resolution technique for real-time and long-term brain imaging. It allows detecting both fast-neuronal and slow-hemodynamic signals. Besides the significant
advantages of fNIRS systems, they still suffer from few drawbacks including low spatial-
resolution, moderately high-level noise and high-sensitivity to movement. In order to overcome
the limitations of currently available non-portable fNIRS systems, we have introduced a new
low-power, miniaturized on-chip photodetector front-end intended for portable fNIRS systems. It
includes silicon avalanche photodiode (SiAPD), Transimpedance amplifier (TIA), and Quench-
Reset circuitry implemented using standard CMOS technologies to operate in both linear and
Geiger modes. So it can be applied for both continuous-wave fNIRS (CW-fNIRS) and also
single-photon counting applications. Several SiAPDs have been implemented in novel structures
and shapes (Rectangular, Octagonal, Dual, Nested, Netted, Quadratic and Hexadecagonal) using
different premature edge breakdown prevention techniques. The main characteristics of the
SiAPDs are validated and the impact of each parameter and the device simulators (TCAD,
COMSOL, etc.) have been studied based on the simulation and measurement results. Proposed
techniques exhibit SiAPDs with high avalanche-gain (up to 119), low breakdown-voltage (around
12V) and high photon-detection efficiency (up to 72% in NIR region) in additional to a low dark-
count rate (down to 30Hz at 1V excess bias voltage). Three new high gain-bandwidth product
(GBW) and low-noise TIAs are introduced and implemented based on distributed-gain concept,
logarithmic-amplification and automatic noise-rejection and have been applied in linear-mode of operation. The implemented TIAs offer a power-consumption around 0.4 mW, transimpedance gain of 169 dBΩ, and input-output current/voltage noises in fA/pV range accompanied with ability to tune the gain, bandwidth and power-consumption in a wide range. The implemented
mixed quench-reset circuit (MQC) and controllable MQC (CMQC) front-ends offer a quenchtime of 10ns, a maximum power-consumption of 0.4 mW, with a controllable hold-off and resettimes. The on-chip integration of SiAPDs with TIA and photon-counting circuitries has been demonstrated showing improvement of the photodetection-efficiency, specially regarding to the
sensitivity, power-consumption and signal-to-noise ratio (SNR) characteristics
