370 research outputs found

    Current-mode processing based Temperature-to-Digital Converters for MEMS applications

    Get PDF
    This thesis presents novel Temperature-to-Digital Converters (TDCs) designed and fabricated in CMOS technology. These integrated smart temperature sensing circuits are widely employed in the Micro-Electro-Mechanical Systems (MEMS) field in order to mitigate the impact of the ambient temperature on their performance. In this framework, the increasingly stringent demands of the market have led the cost-effectiveness specification of these compensation solutions to an higher and higher level, directly translating into the requirement of more and more compact designs (< 0.1 mm²); in addition to this, considering that the great majority of the systems whose thermal drift needs to be compensated is battery supplied, ultra-low energy-per-conversion (< 10 nJ) is another requirement of primary importance. This thesis provides a detailed description of two different test-chips (mas fuerte and es posible) that have been designed with this orientation and that are the result of three years of research activity; for both devices, the conception, design, layout and testing phases are all described in detail and are supported by simulation and measurement results.This thesis presents novel Temperature-to-Digital Converters (TDCs) designed and fabricated in CMOS technology. These integrated smart temperature sensing circuits are widely employed in the Micro-Electro-Mechanical Systems (MEMS) field in order to mitigate the impact of the ambient temperature on their performance. In this framework, the increasingly stringent demands of the market have led the cost-effectiveness specification of these compensation solutions to an higher and higher level, directly translating into the requirement of more and more compact designs (< 0.1 mm²); in addition to this, considering that the great majority of the systems whose thermal drift needs to be compensated is battery supplied, ultra-low energy-per-conversion (< 10 nJ) is another requirement of primary importance. This thesis provides a detailed description of two different test-chips (mas fuerte and es posible) that have been designed with this orientation and that are the result of three years of research activity; for both devices, the conception, design, layout and testing phases are all described in detail and are supported by simulation and measurement results

    Digital-Based Analog Processing in Nanoscale CMOS ICs for IoT Applications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Ultra Low Power Analog Circuits for Wireless Sensor Node System.

    Full text link
    This thesis will discuss essential analog circuit blocks required in ultra-low power wireless sensor node systems. A wireless sensor network system requires very high energy and power efficiency which is difficult to achieve with traditional analog circuits. First, 5.58nW real time clock using a DLL (Delay Locked Loop)-assisted pulse-driven crystal oscillator is discussed. In this circuit, the operational amplifier used in the traditional circuit was replaced with pulsed drivers. The pulse was generated at precise timing by a DLL. The circuit parts operate in different supply levels, generated on chip by using a switched capacitor network. The circuit was tested at different supply voltage and temperature. Its frequency characteristic along with power consumption were measured and compared to the traditional circuit. Next, a Schmitt trigger based pulse-driven crystal oscillator is discussed. In the first chapter, a DLL was used to generate a pulse with precise timing. However, testing results and recent study showed that the crystal oscillator can sustain oscillation even with inaccurate pulse timing. In this chapter, pulse location is determined by the Schmitt trigger. Simulation results show that this structure can still sustain oscillation at different process corners and temperature. In the next chapter, a sub-nW 8 bit SAR ADC (Successive Approximation Analog-to-Digital Converter) using transistor-stack DAC (Digital-to-Analog Converter) is discussed. To facilitate design effort and reduce the layout dependent effect, a conventional capacitive DAC was replaced with transistor-stack DAC with a 255:1 multiplexer. The control logic was designed with both TSPC (True Single Phase Clock) and CMOS logic to minimize transistor count. The ADC was implemented in a 65nm CMOS process and tested at different sampling rates and input signal frequency. Its linearity and power consumption was measured. Also, a similar design was implemented and tested using 180nm CMOS process as part of a sensor node system. Lastly, a multiple output level voltage regulator using a switched capacitor network for low-cost system is discussed.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111626/1/dmyoon_1.pd

    Robust low power CMOS methodologies for ISFETs instrumentation

    No full text
    I have developed a robust design methodology in a 0.18 [Mu]m commercial CMOS process to circumvent the performance issues of the integrated Ions Sensitive Field Effect Transistor (ISFET) for pH detection. In circuit design, I have developed frequency domain signal processing, which transforms pH information into a frequency modulated signal. The frequency modulated signal is subsequently digitized and encoded into a bit-stream of data. The architecture of the instrumentation system consists of a) A novel front-end averaging amplifier to interface an array of ISFETs for converting pH into a voltage signal, b) A high linear voltage controlled oscillator for converting the voltage signal into a frequency modulated signal, and c) Digital gates for digitizing and differentiating the frequency modulated signal into an output bit-stream. The output bit stream is indistinguishable to a 1st order sigma delta modulation, whose noise floor is shaped by +20dB/decade. The fabricated instrumentation system has a dimension of 1565 [Mu] m 1565 [Mu] m. The chip responds linearly to the pH in a chemical solution and produces a digital output, with up to an 8-bit accuracy. Most importantly, the fabricated chips do not need any post-CMOS processing for neutralizing any trapped-charged effect, which can modulate on-chip ISFETs’ threshold voltages into atypical values. As compared to other ISFET-related works in the literature, the instrumentation system proposed in this thesis can cope with the mismatched ISFETs on chip for analogue-to-digital conversions. The design methodology is thus very accurate and robust for chemical sensing

    Bolometers

    Get PDF
    Infrared Detectors and technologies are very important for a wide range of applications, not only for Military but also for various civilian applications. Comparatively fast bolometers can provide large quantities of low cost devices opening up a new era in infrared technologies. This book deals with various aspects of bolometer developments. It covers bolometer material aspects, different types of bolometers, performance limitations, applications and future trends. The chapters in this book will be useful for senior researchers as well as beginning graduate students

    Power Management ICs for Internet of Things, Energy Harvesting and Biomedical Devices

    Get PDF
    This dissertation focuses on the power management unit (PMU) and integrated circuits (ICs) for the internet of things (IoT), energy harvesting and biomedical devices. Three monolithic power harvesting methods are studied for different challenges of smart nodes of IoT networks. Firstly, we propose that an impedance tuning approach is implemented with a capacitor value modulation to eliminate the quiescent power consumption. Secondly, we develop a hill-climbing MPPT mechanism that reuses and processes the information of the hysteresis controller in the time-domain and is free of power hungry analog circuits. Furthermore, the typical power-performance tradeoff of the hysteresis controller is solved by a self-triggered one-shot mechanism. Thus, the output regulation achieves high-performance and yet low-power operations as low as 12 µW. Thirdly, we introduce a reconfigurable charge pump to provide the hybrid conversion ratios (CRs) as 1⅓× up to 8× for minimizing the charge redistribution loss. The reconfigurable feature also dynamically tunes to maximum power point tracking (MPPT) with the frequency modulation, resulting in a two-dimensional MPPT. Therefore, the voltage conversion efficiency (VCE) and the power conversion efficiency (PCE) are enhanced and flattened across a wide harvesting range as 0.45 to 3 V. In a conclusion, we successfully develop an energy harvesting method for the IoT smart nodes with lower cost, smaller size, higher conversion efficiency, and better applicability. For the biomedical devices, this dissertation presents a novel cost-effective automatic resonance tracking method with maximum power transfer (MPT) for piezoelectric transducers (PT). The proposed tracking method is based on a band-pass filter (BPF) oscillator, exploiting the PT’s intrinsic resonance point through a sensing bridge. It guarantees automatic resonance tracking and maximum electrical power converted into mechanical motion regardless of process variations and environmental interferences. Thus, the proposed BPF oscillator-based scheme was designed for an ultrasonic vessel sealing and dissecting (UVSD) system. The sealing and dissecting functions were verified experimentally in chicken tissue and glycerin. Furthermore, a combined sensing scheme circuit allows multiple surgical tissue debulking, vessel sealer and dissector (VSD) technologies to operate from the same sensing scheme board. Its advantage is that a single driver controller could be used for both systems simplifying the complexity and design cost. In a conclusion, we successfully develop an ultrasonic scalpel to replace the other electrosurgical counterparts and the conventional scalpels with lower cost and better functionality

    Variability-aware design of CMOS nanopower reference circuits

    Get PDF
    Questo lavoro è inserito nell'ambito della progettazione di circuiti microelettronici analogici con l'uso di tecnologie scalate, per le quali ha sempre maggiore importanza il problema della sensibilità delle grandezze alle variazioni di processo. Viene affrontata la progettazione di generatori di quantità di riferimento molto precisi, basati sull’uso di dispositivi che sono disponibili anche in tecnologie CMOS standard e che sono “intrinsecamente” più robusti rispetto alle variazioni di processo. Questo ha permesso di ottenere una bassa sensibilità al processo insieme ad un consumo di potenza estremamente ridotto, con il principale svantaggio di una elevata occupazione di area. Tutti i risultati sono stati ottenuti in una tecnologia 0.18μm CMOS. In particolare, abbiamo progettato un riferimento di tensione, ottenendo una deviazione standard relativa della tensione di riferimento dello 0.18% e un consumo di potenza inferiore a 70 nW, sulla base di misure su un set di 20 campioni di un singolo batch. Sono anche disponibili risultati relativi alla variabilità inter batch, che mostrano una deviazione standard relativa cumulativa della tensione di riferimento dello 0.35%. Abbiamo quindi progettato un riferimento di corrente, ottenendo anche in questo caso una sensibilità al processo della corrente di riferimento dell’1.4% con un consumo di potenza inferiore a 300 nW (questi sono risultati sperimentali ottenuti dalle misure su 20 campioni di un singolo batch). I riferimenti di tensione e di corrente proposti sono stati quindi utilizzati per la progettazione di un oscillatore a rilassamento a bassa frequenza, che unisce una ridotta sensibilità al processo, inferiore al 2%, con un basso consumo di potenza, circa 300 nW, ottenuto sulla base di simulazioni circuitali. Infine, nella progettazione dei blocchi sopra menzionati, abbiamo applicato un metodo per la determinazione della stabilità dei punti di riposo, basato sull’uso dei CAD standard utilizzati per la progettazione microelettronica. Questo approccio ci ha permesso di determinare la stabilità dei punti di riposo desiderati, e ci ha anche permesso di stabilire che i circuiti di start up spesso non sono necessari
    corecore