121,520 research outputs found

    A gap analysis of Internet-of-Things platforms

    Full text link
    We are experiencing an abundance of Internet-of-Things (IoT) middleware solutions that provide connectivity for sensors and actuators to the Internet. To gain a widespread adoption, these middleware solutions, referred to as platforms, have to meet the expectations of different players in the IoT ecosystem, including device providers, application developers, and end-users, among others. In this article, we evaluate a representative sample of these platforms, both proprietary and open-source, on the basis of their ability to meet the expectations of different IoT users. The evaluation is thus more focused on how ready and usable these platforms are for IoT ecosystem players, rather than on the peculiarities of the underlying technological layers. The evaluation is carried out as a gap analysis of the current IoT landscape with respect to (i) the support for heterogeneous sensing and actuating technologies, (ii) the data ownership and its implications for security and privacy, (iii) data processing and data sharing capabilities, (iv) the support offered to application developers, (v) the completeness of an IoT ecosystem, and (vi) the availability of dedicated IoT marketplaces. The gap analysis aims to highlight the deficiencies of today's solutions to improve their integration to tomorrow's ecosystems. In order to strengthen the finding of our analysis, we conducted a survey among the partners of the Finnish IoT program, counting over 350 experts, to evaluate the most critical issues for the development of future IoT platforms. Based on the results of our analysis and our survey, we conclude this article with a list of recommendations for extending these IoT platforms in order to fill in the gaps.Comment: 15 pages, 4 figures, 3 tables, Accepted for publication in Computer Communications, special issue on the Internet of Things: Research challenges and solution

    Interoperability in Open IoT Platforms: WoT-FIWARE Comparison and Integration

    Get PDF
    The rapid and exponential growth of the Internet of Things (IoT) has been generating a new breed of technologies that introduce several different protocols and interfaces. The Web of Things (WoT) architecture stands out as an emerging and poten- tial solution to improve interoperability across IoT platforms by describing well-defined software interfaces. However, few studies analyze and compare WoT to other interoperability solutions proposed in the IoT literature. In this paper, we attempt to bridge the gap by three main contributions. First, we qualitative compare the WoT approach with the well-known FIWARE- based interoperability solution.Second, based on the previous analysis, we design and implement a connector to bridge the WoT architecture to the FIWARE ecosystem. Third, we conduct a performance analysis emulating a real IoT-based environment to understand scalability, response time, and computer resource usage of the two interoperability solutions. The results reveal that conceptual design choices impact the applications’ performance: the WoT architecture effectively enables interoperability across IoT Platforms, though it incorporates several characteristics that hinder the implementation of applications. On the other hand, the FIWARE IoT Agent solution is platform-specific. Hence new implementations are needed for each different IoT data model

    Investigating IoT Middleware Platforms for Smart Application Development

    Full text link
    With the growing number of Internet of Things (IoT) devices, the data generated through these devices is also increasing. By 2030, it is been predicted that the number of IoT devices will exceed the number of human beings on earth. This gives rise to the requirement of middleware platform that can manage IoT devices, intelligently store and process gigantic data generated for building smart applications such as Smart Cities, Smart Healthcare, Smart Industry, and others. At present, market is overwhelming with the number of IoT middleware platforms with specific features. This raises one of the most serious and least discussed challenge for application developer to choose suitable platform for their application development. Across the literature, very little attempt is done in classifying or comparing IoT middleware platforms for the applications. This paper categorizes IoT platforms into four categories namely-publicly traded, open source, developer friendly and end-to-end connectivity. Some of the popular middleware platforms in each category are investigated based on general IoT architecture. Comparison of IoT middleware platforms in each category, based on basic, sensing, communication and application development features is presented. This study can be useful for IoT application developers to select the most appropriate platform according to their application requirement

    Embedding Principal Component Analysis for Data Reductionin Structural Health Monitoring on Low-Cost IoT Gateways

    Get PDF
    Principal component analysis (PCA) is a powerful data reductionmethod for Structural Health Monitoring. However, its computa-tional cost and data memory footprint pose a significant challengewhen PCA has to run on limited capability embedded platformsin low-cost IoT gateways. This paper presents a memory-efficientparallel implementation of the streaming History PCA algorithm.On our dataset, it achieves 10x compression factor and 59x memoryreduction with less than 0.15 dB degradation in the reconstructedsignal-to-noise ratio (RSNR) compared to standard PCA. More-over, the algorithm benefits from parallelization on multiple cores,achieving a maximum speedup of 4.8x on Samsung ARTIK 710

    Integration of heterogeneous devices and communication models via the cloud in the constrained internet of things

    Get PDF
    As the Internet of Things continues to expand in the coming years, the need for services that span multiple IoT application domains will continue to increase in order to realize the efficiency gains promised by the IoT. Today, however, service developers looking to add value on top of existing IoT systems are faced with very heterogeneous devices and systems. These systems implement a wide variety of network connectivity options, protocols (proprietary or standards-based), and communication methods all of which are unknown to a service developer that is new to the IoT. Even within one IoT standard, a device typically has multiple options for communicating with others. In order to alleviate service developers from these concerns, this paper presents a cloud-based platform for integrating heterogeneous constrained IoT devices and communication models into services. Our evaluation shows that the impact of our approach on the operation of constrained devices is minimal while providing a tangible benefit in service integration of low-resource IoT devices. A proof of concept demonstrates the latter by means of a control and management dashboard for constrained devices that was implemented on top of the presented platform. The results of our work enable service developers to more easily implement and deploy services that span a wide variety of IoT application domains
    • …
    corecore