This is the final peer-reviewed accepted manuscript of:

Zyrianoff, 1., Heideker, A., Sciullo, L., Kamienski, C., & DI Felice, M. (2021).
Interoperability in open loT platforms: WoT-FIWARE comparison and integration.
Paper presented at the Proceedings - 2021 IEEE International Conference on Smart
Computing, SMARTCOMP 2021, 169-174

The final published version is available online at
https://dx.doi.org/10.1109/SMARTCOMP52413.2021.00043

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

This item was downloaded from IRIS Universita di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

https://cris.unibo.it/
https://dx.doi.org/10.1109/SMARTCOMP52413.2021.00043
https://dx.doi.org/10.1109/SMARTCOMP52413.2021.00043

Interoperability in Open IoT Platforms:
WOT-FIWARE Comparison and Integration

Ivan Zyrianoff*, Alexandre Heideker f Luca Sciullo*, Carlos Kamienski T, Marco Di Felice*,
* Department of Computer Science and Engineering, University of Bologna, Italy
 Federal University of ABC, Santo André, Brazil
{ivandimitry.ribeiro, marco.difelice3, luca.sciullo} @unibo.it, {cak, alexandre.heideker}@ufabc.edu.br

Abstract—The rapid and exponential growth of the Internet of
Things (IoT) has been generating a new breed of technologies that
introduce several different protocols and interfaces. The Web of
Things (WoT) architecture stands out as an emerging and poten-
tial solution to improve interoperability across IoT platforms by
describing well-defined software interfaces. However, few studies
analyze and compare WoT to other interoperability solutions
proposed in the IoT literature. In this paper, we attempt to
bridge the gap by three main contributions. First, we qualitative
compare the WoT approach with the well-known FIWARE-
based interoperability solution.Second, based on the previous
analysis, we design and implement a connector to bridge the
WoT architecture to the FIWARE ecosystem. Third, we conduct
a performance analysis emulating a real IoT-based environment
to understand scalability, response time, and computer resource
usage of the two interoperability solutions. The results reveal that
conceptual design choices impact the applications’ performance:
the WoT architecture effectively enables interoperability across
IoT Platforms, though it incorporates several characteristics that
hinder the implementation of applications. On the other hand,
the FIWARE IoT Agent solution is platform-specific. Hence new
implementations are needed for each different IoT data model.

I. INTRODUCTION

The Internet of Things (IoT) has been creating a whole
new demand over system architectures, infrastructure, and
platform deployment approaches to fulfill the requirement of
a new breed of smart applications [1]. Several technologies,
platforms, and devices emerge in this context, creating a
fragmented and heterogeneous scenario.

The lack of interoperability is one of the main factors
that hinder IoT adoption on a large scale [2]. Indeed, the
heterogeneity present in IoT elevates its cost since there is the
need to adapt or implement new features in already established
solutions to deploy it in a new scenario. A McKinsey report
quantifies in 40% the additional IoT value that can be unlocked
when achieving full interoperability among heterogeneous IoT
systems [3].

In this myriad of services and platforms, two potential
solutions to the IoT interoperability issue have attracted
widespread attention in the last years. One of the most
promising solutions is the Web of Things (WoT) architecture
proposed by the W3C consortium, which enables interoper-
ability across IoT platforms and application domains [4]. The
other is FIWARE [5], an open-source IoT platform funded by
the European Commission, comprised of a series of generic
enablers that exchange data between themselves, providing
different services.

However, there are still open challenges hindering the
dissemination of both solutions on a broad scale. The current
FIWARE interoperability solution only supports a subset of the
leading IoT protocols, and adding new protocols requires pro-
gramming efforts. Similarly, the WoT does not interface with
many IoT Platforms, hampering the technology dissemination.
Lastly, the market presence of different IoT interoperability
platforms that do not integrate with each other may exacerbate
the fragmentation issue rather than solve it.

In this paper, we attempt to bridge this gap through three
main contributions. First, we analyze how WoT and FIWARE
handle interoperability regarding qualitative aspects as flexibil-
ity, implementation difficulty, and adaptability. Second, we de-
sign and implement a connector to bridge the WoT architecture
to the FIWARE ecosystem. Finally, we conduct a performance
analysis study emulating a precision agriculture IoT scenario
from the SWAMP Project [6] to evaluate quantitative issues
that have not emerged in our qualitative analysis, such as
scalability, response time, and computer resource usage.

Our results show that both solutions are capable of process-
ing thousands of sensors with limited computational resources.
Notably, our analysis sheds light on some crucial issues on
the strict WoT functional requirements defined in the W3C
description [4], which hamper the development and perfor-
mance of the WoT architecture on a large scale. Thus, our
FIWARE-WoT interface introduces benefits for both worlds.
It increases the availability of protocols supported by FIWARE
and enables WoT to interact with a vast catalog of FIWARE-
based software modules.

In the remainder of this paper, Section II presents the back-
ground and related work. A qualitative comparison between
FIWARE and WoT composes Section III. Section IV provides
a detailed view of research design and methods. The key
results are presented in Section V, followed by discussing the
lessons learned in Section VI. Finally, Section VII concludes
and proposes relevant future work.

II. BACKGROUND AND RELATED WORK

Interoperability is a significant concern for IoT systems
and platforms [7], with several solutions proposed at device,
network, or platform layers [2]. In this paper, we focus on
the latter approach by comparing two of the most popular
solutions available in the market, i.e., the FIWARE ecosystem
and the W3C WoT standard. Performance evaluations have

been conducted individually for FIWARE [8], and WoT [9].
Also, there are specific studies that analyse the interoperabil-
ity of WoT [10]. Similarly, several applications using both
approaches have been described in the IoT literature (e.g.,
[11], [12]). However, we are not aware of existing studies
that compare them in terms of interoperability support. In
the remainder of this Section, we briefly present the main
characteristics of the two approaches.

A. Interoperability in FIWARE

The FIWARE platform [5] is an open-source IoT framework
fostered and funded by the European Commission under
Horizon 2020 program. It comprises a series of software
modules called Generic Enablers (GE) that perform functions
needed in various IoT-based applications.

Applications in the FIWARE ecosystem adopt a standard
NGSI (Next Generation Service Interface) data exchange
model that enables communication between them. IoT Agents
are components that handle IoT data heterogeneity in FI-
WARE, translating IoT-specific protocols into the NGSI con-
text information protocol [13]. Additionally, IoT Agents map
NGSI information as virtual representations of the IoT devices
in JSON entities, stored and managed by Orion, a pub-
lish/subscribe context broker.Applications can consume and
publish IoT data through Orion using NGSI REST-based web
interfaces. Hence, interoperability is granted once applications
are in the FIWARE ecosystem and use the NGSI data model.

IoT Agent applications are data model-specific, so each
different data structure requires a new IoT Agent. There are
currently agents for the following data models and protocols:
LWM2M over CoAP, JSON or UltraLight over HTTP/MQTT,
OPC-UA, Sigfox LoRaWAN [13]. Further, a NodeJS library
to enable IoT Agent development is available to build custom
agents to connect non-support data-structures/network proto-
cols to the FIWARE ecosystem.

B. Interoperability in W3C WoT

The recent WoT architecture proposed by W3C enables
interoperability across different IoT Platforms and application
domains.The core of this proposal is the definition of a
Web Thing (WT), which indicates any “physical or a virtual
entity whose metadata and interfaces are described by a
Thing Description (TD)” [4]. The latter denotes a sequence
of standardized, machine-understandable metadata encoded in
JSON-LD ! that models the capabilities of an IoT device, such
as:

Affordances: provide an abstract model of the WT interface
in terms of properties (i.e., the state variables of the WT),
actions (i.e., commands that can be invoked on the WT), and
events (i.e., notifications sent by the WT).

Protocol Bindings: map the Affordances to the network
strategies (e.g., the protocols) to communicate with the WT.

Security Configurations: define the control access mecha-
nisms to the Affordances.

lison-ld.org

Data Schemas: describes the information model and pay-
load structure passed between WTs and consumers during
interactions.

The TD is the primary mechanism to enable interoperability
across different IoT platforms and devices. Finally, a run-
time software named Servient implements the software object
described by the TD. The Servient allows to host and expose
a WT (i.e., to make the TD available over a network) and to
interact with a remote WT by consuming the TD. According
to W3C, [4], a WT functionality should be available in all
available protocols. Thus, Servients bind multiple protocols
and data models to enable interactions with different platforms.

III. WOT vs. FIWARE: A QUALITATIVE COMPARISON

Both FIWARE and WoT handle the heterogeneity in IoT
environments through a common philosophy: map IoT devices
as virtual entities with well-defined data structures that other
applications can consume to interact with IoT devices. In
FIWARE, the context broker manages context information,
while in the W3C WOoT, the Servient manages the virtual
entities as TDs. FIWARE defines a standard data exchange
interface (NGS]) in its ecosystem and utilizes Agents to map
IoT devices to NGSI entities. In the W3C WoT, each device
must be associated with a WT to integrate into the WoT
context. Figure 1 illustrates the interoperability approaches of
WoT (A) and FIWARE (B). The architectural differences may
also introduce qualitative differences on system deployments,
reflected by the following aspects:

Implementation efforts: the FIWARE interoperability so-
lution is an out-off-shelf application. Thus, programming
efforts are only required if there is the need to implement
a new loT Agent for a previously unsupported data model
or protocol. Opposite to that, there is not an out-of-the-shelf
WoT application. However, there exist frameworks (e.g., the
node-wot [14] tool) for assisting the development and the
run-time execution of WTs.

Interfacing other applications: 10T Agents communicate
only to FIWARE-based context brokers. However, FIWARE
provides a vast catalog of generic and specific enablers that
easily interface to any application with its ecosystem, third-
party applications that do not communicate via NGSI standard
require a connector to be bridged to FIWARE. A similar issue
emerges in the WoT context: WT can be consumed through
a Servient or by processing the WoT-specific format that is
often not compatible with other IoT Platforms.

Flexibility: Both solutions require the development efforts
for dealing with unknown protocols. However, the W3C WoT
architecture descriptions provides clear guidelines that assist
the implementation of new solutions.

Adaptability - i.e., adapt to new situations minimizing the
need of a new deployment: IoT devices can be created, read,
updated, and deleted to IoT Agent at run-time using its APIL.
There is no specification in the WoT architecture of a similar
interface. Although it is possible to implement such a feature
in a Servient, it requires programming efforts.

Consumer
1

HTTP -
Consumer
A) MQTT e———7 u Amm]
[-] g » [-]
Protocol

N
Age
ON gt A5
t \ ’

— ", ;
B) [Context |, *
[-] "|_Broker |\ 2
Protocol ______[Protocol N|,-* [.-]
N loT Agent

Database
Platform Specific Communication

Fig. 1. WoT and FIWARE architectural definitions

Based on the aforementioned comparison, we can conclude
that both solutions could gain from integrating one with
the other. Although FIWARE already has an interoperabil-
ity solution, it might extend the supported protocols and
data formats, especially towards IoT devices that the IoT
Agents do not already support. For WoT, integrating with
FIWARE would vastly expand the support towards applica-
tions/platforms working with the NGSI model.

IV. WOT-FIWARE SOFTWARE ADAPTER

We developed a generic application that bridges the WoT
and the FIWARE ecosystems by translating the WoT data
to the NGSI format. We opted to develop a standalone
WoT mash-up application instead of implementing a direct
connection from a WoT Servient to FIWARE due to two
main reasons: 1) Generality: developing the Adapter as an
application enables the communication between FIWARE and
WoT for any system, not only for our scenario. 2) WoT best
practices: the WoT Architecture [4] does not have a way of
actively sending data in a specific network protocol to another
software module. Instead, the mash-up application subscribes
to a TD event, which transfers the data via a WoT-specific
interface when triggered.

We developed the WoT-FIWARE Adapter in JavaScript,
using NodeJS on top of the node-wot framework [14]. Our
Adapter subscribes to the ngsiOutput event in the TD
and maps the WT as an Orion entity. The WT triggers this
event whenever there is an update in one of its properties.
The Adapter iterates through such properties and encapsulates
them in a JSON object represented in NGSI. We virtualized
the WoT-FIWARE Adapter as a Docker container, available as
an open-source project’.

Figure 2 illustrates the WoT connection to the FIWARE
ecosystem dataflow. The complete steps depicted in Figure 2
are: 1) an IoT device sends a message using a WoT supported

Zhttps://github.com/UniBO-PRISMLab/WoT-FIWARE-adapter

1 2 3 4
WoT]___*[nwms}__ { Flwnns]
23 Servient Adapter Orion

Device :
—

MongoDB

Fig. 2. Web of Things connection to the FIWARE ecosystem dataflow

protocol (e.g., MQTT) to the WoT Servient and then to the
WT associated with the device; 2) the WT processes the IoT
message and updates the TD properties related to that device.
In turn, it triggers the ngsiOutput event, which notifies the
WoT-FIWARE Adapter; 3) The Adapter maps the received WT
to a corresponding FIWARE Orion entity. If this entity does
not exist in Orion, the WoT-FIWARE Adapter creates it; 4)
Orion receives the message and stores the entity information
in MongoDB.

V. QUANTITATIVE ANALYSIS: EXPERIMENTAL DESIGN

In the following, we present a performance evaluation
of the two interoperability solutions on a real-world IoT
deployment. The goal of the evaluation is twofold: (i) to
validate the operations of the WoT-FIWARE Adapter detailed
in Section IV; (ii) to investigate further the performance trade-
offs, scalability, and requirements of IoT Agent and WoT
solutions. The quantitative comparison is influenced by the
current implementations of the interoperability solutions.

A. Evaluation Scenario

We consider a performance analysis scenario based on a
real IoT environment using the SWAMP Platform [6] for
smart irrigation. In detail, sensor probes obtain soil data and
transmit it to the SWAMP FIWARE-based Platform through
LoRaWAN, where a set of mathematical and data-driven
models are processed to generate an irrigation prescription
map [15]. Figure 4 illustrates the complete dataflow from an
infrastructural point-of-view, with real pictures of a SWAMP
Pilot located in a Brazilian agriculture frontier [8].

Although the SWAMP reference sensor probe communica-
tion technology is LoORaWAN, some off-the-shelf soil sensors
use the basic LoRa modulation. Those probes transmit data to
a simple LoRa gateway that sends the sensor payload directly
to the platform in a raw MQTT structure, thus bypassing
ChirpStack - LoRaWAN server responsible for handling net-
working, authorization, and authentication issues. Soil probes
sense the soil and transmit data to the LoRa Gateway every 10
minutes, structuring the payload according to the UltraLight2.0
protocol - a lightweight text-based protocol for constrained
devices and communications where bandwidth and device
memory may be limited [16].

Figure 3 depicts the core SWAMP Platform dataflow, in-
cluding the two LoRa-based transmission methods. In the
Interoperability Solution block, we tested two alternatives: 1)
WoT software layer: composed of a Servient and the WoT-
FIWARE Adapter that enables the communication with the

LoRaWAN SWAMP Platform

. ChlrpStac]‘ ChlrpStack
Gateway Server

Interoperability
Solution

----------- kit
Gatewa 3 FIWARE Cansumer
Device " A 3 rion Apps
LoRa

Fig. 3. Dataflow of the SWAMP IoT-based Platform

FIWARE Orion. To this aim, we developed WTs for each
SWAMP soil probes; the WTs are fed by the UL data and
from the ChirpStack Server; 2) Native FIWARE environment:
We used the UL IoT Agent in the experiments with basic LoRa
modulation and the SWAMP LoRaWAN IoT Agent [8] for the
LoRaWAN experiments. Currently, there is an official version
of the LoRaWAN IoT Agent, but it is not fully integrated into
the ChirpStack Server.

B. Testing Environment Design and Configuration

We used SenSE (Sensor Simulation Environment) as the
synthetic IoT sensor workload generator that can abstract real
devices and model complex scenarios [17].As the performance
analysis focuses primarily on the interoperability solution, we
emulated all the data flow modules prior to the interoperability
application. Thus, we relied on SenSE to emulate the data sent
by those modules.

In the experiments, SenSE produces synthetic data and
sends it to the interoperability solution. The corresponding soil
probe entity is updated in Orion, which sends a notification
with the data to the Consumer. The software components
used in the experiments were deployed as Docker containers.
The Consumer represents a generic application that consumes
sensor data - e.g., data visualization tool, mobile app, or a
third-party application. It is implemented as a simple data sink.

The number of sensors and the sensor message periodicity -
each emulated sensor sends a message each 10 min - does not
vary during the experiment. We utilized two Virtual Machines
(VM) to perform the experiments. In VM #1, we deployed
the modules that enable the performance analysis - SenSE
and Consumer - and in VM #2, we deployed the applications
under test: the interoperability solution, FIWARE Orion, and
MongoDB. We configured both VMs as the standard Amazon
AWS t2.medium instance configuration (2vCPU - 4GB of
RAM).

C. Performance Analysis

We conducted 18 experiments, varying the levels of three
factors - workload, protocol, and interoperability solution -
as depicted by Table I. We evaluated WoT and FIWARE IoT
Agent as interoperability solutions and Ultralight2.0 (UL) and
LoRaWAN as protocols - mixed protocol as appears in Table I
refers to experiments where both UL and LoRaWAN protocols
were used simultaneously. Also, the workload was varied from
low (1,000 sensors), medium (5,000 sensors), and high (10,000

TABLE I
EXPERIMENT FACTORS AND LEVELS

Level

Web of Things - FIWARE IoT Agent
Ultralight2.0 - LoRaWAN - Mixed
1000 - 5000 - 10000

l Factor

Interoperability Solution
Protocol
Number of Sensors

sensors). SenSE emulates SWAMP sensor probes generating
one packet every 10 minutes. Each experiment was replicated
30 times, and asymptotic confidence intervals were computed
at the level of 99%.

We focused on the following metrics in the analysis: end-
to-end delay (i.e. the average time taken since a sensor data
point is generated until the Consumer application receives it),
percentage of delivered messages, and system metrics (i.e.
CPU and RAM usage per Docker container of the evaluated
modules, collected every five seconds.).

VI. RESULTS

Figure 5 summarizes the key results of the performance
evaluation, depicting the total experiment delay for the IoT
Agent and the WoT software layer in low, medium, and high
workloads for the three different types of traffic: LoORaWAN
messages, UL messages, and mixed traffic - half of the sensors
sending UL messages and the other half sending LoRaWAN
messages. The y-axis is expressed on a logarithmic scale.

When comparing the IoT Agent and the WoT software
layer’s performance, it is important to stress that we uti-
lized two different IoT Agent implementations. Thus, when
observing Figure 5, we can conclude that the WoT (plus
Connector) delay is similar to the official FIWARE IoT Agent.
Nevertheless, it is worst than the SWAMP LoRaWAN imple-
mentation. In the experiments with mixed traffic, the WoT
interoperability solution improved its performance - regarding
delay - compared to its performance in experiments using
LoRaWAN traffic. However, the IoT Agent performed better
because both applications divided the processing between
them, acting as a workload balancing.

Analyzing the delay for high workload, we conclude that
neither application can keep up with 10,000 sensors, consid-
ering the computer resources allocated, since the experiments
overall had delays from 18s to 51s. All messages were
delivered in the IoT Agent experiments, and most of them
were delivered in the WoT experiment. An issue unraveled by
the experiments was the loss of messages in the WoT software
layer experiments. This loss is reported in Table II, which
shows the delivered message rate for all the experiments and
reveals packet loss events under high workloads.

The computer resources usage are shown in Figure 6 - CPU
usage - and Figure 7 - memory usage. We can observe that
MongoDB is the application with the highest demand for CPU,
caused by Orion. Each Orion entity is stored in MongoDB, and
if an attribute is updated, Orion will also update that attribute
in MongoDB, thus increasing the processing demand for the
database. Regarding memory usage, there is a significant

o o " £
| Sail Probe §

¥

- Internet -+ --- Internet -

Fig. 4. SWAMP dataflow from infrastructure point-of-view

LoRaWAN UltraLight Mix

I 0T Agent
S weT

104 4

107 4

Delay (ms)

102§

1000

5000 10000 1000 5000 10000

Number of Sensors

1000 5000 10000

Fig. 5. Experimental delay

TABLE II
DELIVERED MESSAGES
Interoperability App. Traffic Workload | Delivered Messages
Web of Things LoRaWAN High 84.04 + 6.10%
Web of Things UltraLight High 90.13 £ 3.57%
Web of Things Mix Medium 98.32 + 1.14%
Web of Things Mix High 89.81 + 2.80%

difference between the WoT solution and the IoT Agents,
which we believe is caused by the soil probe TD. A TD
is verbose and individual to each different soil probe. Also,
the node—wot implementation does not use - by default - a
database. Thus all information needed is stored in the RAM.
The depletion of RAM in the WoT experiments is the cause
of losing messages.

VII. DISCUSSION

The higher overall delay of the WoT software layer is
expected since the latter is composed of two modules (WT
+ the Adapter); this solution may introduce more processing
and networking steps that are not needed in the IoT Agent
implementation. However, this is not true when comparing
the WoT software layer with the official IoT Agent - i.e., in
experiments solely with UL traffic - in this case, the delay is
similar.

A significant implementation difference between the IoT
Agent and the WoT solution is that Servient does not use
a database. That difference is reflected in the RAM usage,
which was higher for WoT since the Servient allocated the
TDs in memory. Although we could have used a database
in our WoT Servient implementation, this is not the default.
Hence its implementation would have increased the project
complexity.

1e6Web of Things-LoRaWAN 15 le6 10T Agent-LoRaWAN
124 -@- Mosquitto -@- Mosguitto
10 4 =®= MongoDB 1.0 4 =&= MongoDB
@ WoT Servient i@ -@- Orion
> 0.8+ =®= Orion |y 0.8 1 LoRa leT Agent
a -®- WoT-FIWARE Adapter o
406 06
[l fl
g 044 g 04
= =
0.z 0.2 —
coillie-=-mTTTT
0.0 4 e R ——————
0o L& R=o=== 9
0 1000 5000 10000
Number of Sensors Mumber of Sensors
1e6Web of Things-UltraLight 15 le6 loT Agent-UltraLight
124 -
- &= Mosquitto — &= Mosquitto
10 4 —*®- MongoDB 1.0+ —#- MongoDB
é WoT Servient E —-®= Orion
D 0.8 1 -@= Orion 'y 081 -@=- UL loT Agent
E -®= WoT-FIWARE Adapter E
0.6 _a |5 06
§ 04 Bl 1+
ge P g 0.4
=024y o=t * = 02
P] o
00 {8=222212 S-zazzazzi ! sl -
T T T 0.0 ¥ u 3
1000 5000 10000 1000 5000 10000
Number of Sensors Mumber of Sensors
1e6 Web of Things-Mix 15 le6 loT Agent-Mix
129 -
-®- Mosquitto -®- Mosquitto
1.0 4 =®= MongoDB 1.0+ =®= MongoDB
@ WoT Servient o -®- Orion
3 081 -e= Orion Iy 0.8 1 LoRa loT Agent
a -o- WoT-FIWARE Adapter o -®- UL loT Agent
206 " 06
Mmm—mmmm—— -0
fad o f
g 044 e g 041
I} o [}
= 02 {uo” =
0.0 4
T T T y T
1000 5000 10000 1000 5000 10000
Number of Sensors Mumber of Sensors
Fig. 6. Experimental CPU Usage
Moreover, the WoT requirement of not having
protocol/platform-specific endpoints prevents integration

with other IoT Platforms that have well-defined interfaces
and protocols. A direct consequence of this decision is
implementing a specific adapter for bridging the generic
WoT interface to specific ones, such as the WoT-FIWARE
Adapter. Although the evaluation analysis demonstrated the
effectiveness and validated the correct operations of our
software, the need for an adapter may introduce a possible
system failure point or a bottleneck. Similar concerns about
the usage of the adapter can be raised from a software
architectural perspective. Indeed, the main goal of the
W3C WoT initiative is to enable interoperability across IoT
Platforms. Nonetheless, in our scenario, interoperability is
not guaranteed by WoT but by the WoT-FIWARE Adapter.

Web of Things - LoRaWAN 10T Agent - LoRaWAN

10 100
-8- Mosquitto -@- Mosguitto
80 =®= MongoDB 80 =-@= MongoDB
_ WoT Servient _ -®- Orion
2 -®- Orion . & LoRa loT Agent »
u 60 1 -@- WoT-FIWARE Adapter -~ u 80 e
@ rd -l s
g - i .
o4 —* S 40 —*
5 - & B
s} V'] /
- .
20 e 20 g :
o - ___=.====:=:::=:=' 0 =,——_:____,.==::::::::_-.
1000 5000 10000 1000 5000 10000
MNumber of Sensors Number of Sensors
Web of Things - UltraLight loT Agent - UltraLight
100 100
—®- Mosquitto Mosquitto
a0 -#- MongoDB a0 MongoDB
_ WoT Servient _ Crion
=2 -@- Orion ,/ 2 UL loT Agent »
w601 —em o o 60 £
o ®= WoT-FIWARE Adapté'ar I3 L
o , @ .
=1 -~ E Pl
S0 v S0 —
5] o] e
20 _4’+ 20
0 oo mmme=f=========2220 0
1000 5000 10000 1000 5000 10000
Mumber of Sensors Number of Sensors
Web of Things - Mix loT Agent - Mix
100 100
-@- Mosquitto -®- Mosquitto
go | ~® MongoDB a0 -®= MongoDB
_ WoT Servient _ -®- Orion
2 -®- Orion L & LoRa loT Agent
.
u 60 1 -@- WoT-FIWARE Adapter # u 60 -®- UL loT Agent
2% 2%
=] . =]
20 - 20
-
ol I.,;,:::::::! —————————— ', g l@z=222
1000 5000 10000 1000

Number of Sensors

MNumber of Sensors

Fig. 7. Experimental Memory Usage

The same behavior occurred in [18] in which the authors
developed a middleware application to integrate the WoT
within the ArrowHead ecosystem. Thus, the conceptual
requirements of WoT impacted its performance and required
additional programming efforts compared to the IoT Agent
solution: WoT enables interoperability only if all applications
that communicate with it adopt the TD standard interfaces.

VIII. CONCLUSIONS AND FUTURE WORKS

The lack of interoperability in the IoT environment is
currently a barrier to its large-scale adoption. This paper
presents and compares interoperability solutions between two
emerging IoT solutions - FIWARE and W3C WoT. Further, we
propose, implement, and evaluated a connector that bridges
both technologies. Additionally, we evaluated WoT and FI-
WARE interoperability applications in a real-world IoT de-
ployment related to smart farming. Our results show that both
solutions can handle large IoT systems with limited available
computer resources. Our evaluation enlightens crucial trade-
offs. FIWARE lacks adaptability and flexibility but is an off-
the-shelf solution. WoT is flexible and customizable, though
it requires coding applications from the ground up. We are
planning to extend the study in twofold research directions.
Further, we intend to evaluate the WoT-FIWARE connector’s
effectiveness on other IoT scenarios, such as Structural Health
Monitoring (SHM).

ACKNOWLEDGMENTS

This work has been funded by INAIL within the
BRIC/2018, ID=11 framework, project MAC4PRO (“Smart
maintenance of industrial plants and civil structures via inno-
vative monitoring technologies and prognostic approaches”).
We also acknowledge the SWAMP Project has been jointly
funded by MCTIC/RNP in Brazil and the European Commis-
sion in Europe, under the EUB-02-2017 IoT Pilots call.

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “Understanding the internet
of things: definition, potentials, and societal role of a fast evolving
paradigm,” Ad Hoc Networks, vol. 56, pp. 122—140, 2017.

[2] M. Noura, M. Atiquzzaman, and M. Gaedke, “Interoperability in internet
of things: Taxonomies and open challenges,” Mobile Networks and
Applications, vol. 24, no. 3, pp. 796-809, 2019.

[3] J. Manyika, M. Chui, P. Bisson, J. Woetzel, R. Dobbs, J. Bughin, and
D. Aharon, “The internet of things: Mapping the value beyond the hype,”
2015.

[4] M. Kovatsch, R. Matsukura, M. Lagally, T. Kawaguchi, K. Toumura, and
K. Kajimoto, “Web of things (wot) architecture,” W3C recommendation,
Apr. 2020. https://www.w3.org/TR/wot-architecture/.

[5] FIWARE Foundation, “Fiware: The open source platform for our smart
digital future.” www.fiware.org, Accessed Mar. 10, 2021.

[6] C. Kamienski, J.-P. Soininen, M. Taumberger, R. Dantas, A. Toscano,
T. Salmon Cinotti, R. Filev Maia, and A. Torre Neto, “Smart water
management platform: Iot-based precision irrigation for agriculture,”
Sensors, vol. 19, no. 2, 2019.

[71 A. Broring, S. Schmid, C. Schindhelm, A. Khelil, S. Kibisch,
D. Kramer, D. Le Phuoc, J. Mitic, D. Anicic, and E. Teniente, “En-
abling iot ecosystems through platform interoperability,” IEEE Software,
vol. 34, no. 1, pp. 54-61, 2017.

[8] 1. Zyrianoff, A. Heideker, D. Silva, J. Kleinschmidt, J.-P. Soininen,
T. Salmon Cinotti, and C. Kamienski, “Architecting and deploying iot
smart applications: A performance—oriented approach,” Sensors, vol. 20,
no. 1, p. 84, 2020.

[9]1 C. Aguzzi, L. Gigli, L. Sciullo, A. Trotta, and M. Di Felice, “From
cloud to edge: Seamless software migration at the era of the web of
things,” IEEE Access, vol. 8, pp. 228118-228135, 2020.

[10] C.-M. Chituc, “Towards seamless communication in the web of things:
Are standards sufficient to ensure interoperability?,” in 2020 13th
International Conference on Communications (COMM), pp. 427431,
IEEE, 2020.

[11] B. Klotz, S. K. Datta, D. Wilms, R. Troncy, and C. Bonnet, “A car as
a semantic web thing: Motivation and demonstration,” in 2018 Global
Internet of Things Summit (GIoTS), pp. 1-6, 2018.

[12] L. Carnevale, A. Celesti, M. Di Pietro, and A. Galletta, “How to
conceive future mobility services in smart cities according to the fiware
frontiercities experience,” IEEE Cloud Computing, vol. 5, no. 5, pp. 25—
36, 2018.

[13] FIWARE Foundation, “Iot agents.” https://fiware-
academy.readthedocs.io/en/latest/iot-agents/idas/index.html, Accessed
Mar. 9, 2021.

[14] W3C ‘Working Group, “Eclipse thingweb node-wot.”
https://github.com/eclipse/thingweb.node-wot, ~ Accessed Mar. 9,
2021.

[15] R. Togneri, C. Kamienski, R. Dantas, R. Prati, A. Toscano, J.-P.
Soininen, and T. S. Conic, “Advancing iot-based smart irrigation,” IEEE
Internet of Things Magazine, vol. 2, no. 4, pp. 20-25, 2019.

[16] FIWARE Foundation, “Fiware iot agent ultralight”” https://fiware-
iotagent-ul.readthedocs.io/en/latest/usermanual, Accessed Mar. 9, 2021.

[17] 1. Zyrianoff, F. Borelli, G. Biondi, A. Heideker, and C. Kamienski,
“Scalability of real-time iot-based applications for smart cities,” in
2018 IEEE Symposium on Computers and Communications (ISCC),
pp. 00688-00693, 2018.

[18] L. Sciullo, F. Montori, A. Trotta, M. Di Felice, and T. Salmon Cinotti,
“Discovering web things as services within the arrowhead framework,”
in 2020 IEEE Conference on Industrial Cyberphysical Systems (ICPS),
vol. 1, pp. 571-576, 2020.

