440 research outputs found

    Infer Implicit Contexts in Real-time Online-to-Offline Recommendation

    Full text link
    Understanding users' context is essential for successful recommendations, especially for Online-to-Offline (O2O) recommendation, such as Yelp, Groupon, and Koubei. Different from traditional recommendation where individual preference is mostly static, O2O recommendation should be dynamic to capture variation of users' purposes across time and location. However, precisely inferring users' real-time contexts information, especially those implicit ones, is extremely difficult, and it is a central challenge for O2O recommendation. In this paper, we propose a new approach, called Mixture Attentional Constrained Denoise AutoEncoder (MACDAE), to infer implicit contexts and consequently, to improve the quality of real-time O2O recommendation. In MACDAE, we first leverage the interaction among users, items, and explicit contexts to infer users' implicit contexts, then combine the learned implicit-context representation into an end-to-end model to make the recommendation. MACDAE works quite well in the real system. We conducted both offline and online evaluations of the proposed approach. Experiments on several real-world datasets (Yelp, Dianping, and Koubei) show our approach could achieve significant improvements over state-of-the-arts. Furthermore, online A/B test suggests a 2.9% increase for click-through rate and 5.6% improvement for conversion rate in real-world traffic. Our model has been deployed in the product of "Guess You Like" recommendation in Koubei.Comment: 9 pages,KDD,KDD201

    Enhancing VAEs for Collaborative Filtering: Flexible Priors & Gating Mechanisms

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์œตํ•ฉ๊ณผํ•™๊ธฐ์ˆ ๋Œ€ํ•™์› ์œตํ•ฉ๊ณผํ•™๋ถ€(๋””์ง€ํ„ธ์ •๋ณด์œตํ•ฉ์ „๊ณต),2019. 8. ์„œ๋ด‰์›.Since Matrix Factorization based linear models have been dominant in the Collaborative Filtering context for a long time in the past, Neural Network based CF Models for recommendation have started to gain attention recently. One branch of research is based on using deep generative models to model user preferences and Variational Autoencoders where shown to give state-of-the-art results. However, there are some potentially problematic characteristics of the current Variational Autoencoder for CF. The first is the too simplistic prior VAEs incorporate for learning the latent representations of user preference, which may be restricting the model from learning more expressive and richer latent variables that could boost recommendation performance. The other is the models inability to learn deeper representations with more than one hidden layer. Our goal is to incorporate appropriate techniques in order to mitigate the aforementioned problems of Variational Autoencoder CF and further improve the recommendation performance of VAE based Collaborative Fil-tering. We bring the VampPrior, which successfully made improvements for image generation to tackle the restrictive prior problem. We also adopt Gat-ed Linear Units (GLUs) which were used in stacked convolutions for lan-guage modeling to control information flow in the easily deepening auto-encoder framework. We show that such simple priors (in original VAEs) may be too restric-tive to fully model user preferences and setting a more flexible prior gives significant gains. We also show that VAMP priors coupled with gating mechanisms outperform SOTA results including the Variational Autoencoder for Collaborative Filtering by meaningful margins on 4 benchmark datasets (MovieLens, Netflix, Pinterest, Melon).์ตœ๊ทผ ๋‰ด๋Ÿด๋„ท ๊ธฐ๋ฐ˜ ํ˜‘์—…ํ•„ํ„ฐ๋ง ์ถ”์ฒœ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์ฃผ๋ชฉ์„ ๋ฐ›๊ณ  ์žˆ๋‹ค. ๊ทธ ์ค‘ ํ•œ ๊ฐˆ๋ž˜์˜ ์—ฐ๊ตฌ๋Š” ๊นŠ์€ ์ƒ์„ฑ๋ชจํ˜• (Deep Generative Model)์„ ์ด์šฉํ•ด ์‚ฌ์šฉ์ž๋“ค์˜ ์„ ํ˜ธ๋ฅผ ๋ชจ๋ธ๋งํ•˜๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค. ์ด์ค‘ Variational Autoencoder๋ฅผ (VAE) ์ด์šฉํ•œ ๋ฐฉ๋ฒ•์ด ์ตœ๊ทผ state-of-the-art (SOTA) ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ VAE๋ฅผ ์ด์šฉํ•œ ํ˜‘์—…ํ•„ํ„ฐ๋ง ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ํ˜„์žฌ ๋ช‡ ๊ฐ€์ง€์˜ ์ž ์žฌ์ ์ธ ๋ฌธ์ œ์ ๋“ค์„ ์ง€๋‹ˆ๊ณ  ์žˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ์‚ฌ์šฉ์ž ์„ ํ˜ธ๋ฅผ ์••์ถ•ํ•˜๋Š” ์ž ์žฌ๋ณ€์ˆ˜๋ฅผ ํ•™์Šตํ•˜๋Š” ๊ณผ์ •์—์„œ ๋งค์šฐ ๋‹จ์ˆœํ•œ ์‚ฌ์ „๋ถ„ํฌ๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ๋˜ ๋‹ค๋ฅธ ๋ฌธ์ œ์ ์€ ๋ชจ๋ธ์ด ํ˜„์žฌ ์—ฌ๋Ÿฌ ๋‹จ์„ ์ด์šฉํ•œ ๊นŠ์€ ์ธ์ฝ”๋”์™€ ๋””์ฝ”๋”๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ๋ชปํ•˜๊ณ  ์žˆ๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ตœ์‹ ๊ธฐ์ˆ ๋“ค์„ ํ™œ์šฉํ•˜์—ฌ ์•ž์„  ๋ฌธ์ œ์ ๋“ค์„ ํ•ด๊ฒฐํ•˜๊ณ  VAE๋ฅผ ์ด์šฉํ•œ ํ˜‘์—…ํ•„ํ„ฐ๋ง ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ถ”์ฒœ์„ฑ๋Šฅ์„ ๋”์šฑ ๋†’์ด๋Š” ๊ฒƒ์ด ๋ชฉํ‘œ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ํ˜‘์—…ํ•„ํ„ฐ๋ง ๋ฌธ์ œ์— ๋” ๋ณต์žกํ•œ ์‚ฌ์ „๋ถ„ํฌ (Flexible Prior)๋ฅผ ์ ์šฉํ•œ ์ฒซ ์—ฐ๊ตฌ๋กœ์„œ, ๊ธฐ์กด์˜ ๋‹จ์ˆœํ•œ ์‚ฌ์ „๋ถ„ํฌ๊ฐ€ ๋ชจ๋ธ์˜ ํ‘œํ˜„๋ ฅ์„ ์ œํ•œํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ ๋” ๋ณต์žกํ•œ ์‚ฌ์ „๋ถ„ํฌ๋ฅผ ์ •์˜ํ•จ์œผ๋กœ์จ ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ๋”์šฑ ๋†’์ผ ์ˆ˜ ์žˆ์Œ์„ ๋ณด์˜€๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์ด๋ฏธ์ง€ ์ƒ์„ฑ ๋ฌธ์ œ์—์„œ ์ข‹์€ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์ธ VampPrior๋ฅผ ์ด์šฉํ•ด ์‹คํ—˜์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ๋˜ํ•œ VampPrior๋ฅผ Gating Mechanisim๊ณผ ํ•จ๊ป˜ ์‚ฌ์šฉํ•˜์˜€์„ ๋•Œ ๊ธฐ์กด SOTA๋ฅผ ๋„˜์–ด์„œ๋Š” ์„ฑ๋Šฅ์„ ๋ณด์ž„์„ ์ถ”์ฒœ์•Œ๊ณ ๋ฆฌ์ฆ˜์—์„œ ์‚ฌ์šฉ๋˜๋Š” ๋Œ€ํ‘œ์ ์ธ ๋ฐ์ดํ„ฐ์…‹๋“ค์„ ํ†ตํ•ด ๋ณด์—ฌ์ค€๋‹ค.1 INTRODUCTION 1 1.1 Background and Motivation 1 1.2 Research Goal 3 1.3 Enhancing VAEs for Collaborative Filtering 3 1.4 Experiments 5 1.5 Contributions 5 2 RELATED WORK 7 2.1 Collaborative Filtering 7 2.1.1 Traditional methods & Matrix-Factorization based CF 8 2.1.2 Autoencoders for CF 12 2.2 Deep Generative Models (VAE) 17 2.2.1 Variational Bayes 18 2.2.2 Variational Autoencoder 18 2.3 Variational Autoencoder for Collaborative Filtering 20 2.3.1 VAE for CF 21 2.4 Recent research in Computer Vision & Deep Learning 24 2.4.1 VampPrior 24 2.4.2 Gated CNN 25 3 METHOD 28 3.1 Flexible Prior 29 3.1.1 Motivation 29 3.1.2 VampPrior 30 3.1.3 Hierarchical Stochastic Units 31 3.2 Gating Mechanism 32 3.2.1 Motivation 32 3.2.2 Gated Linear Units 34 4 EXPERIMENT 35 4.1 Setup 35 4.1.1 Baseline Models 35 4.1.2 Proposed Models 37 4.1.3 Strong Generalization 37 4.1.4 Evaluation Metrics 38 4.2 Datasets 38 4.3 Configurations 39 4.4 Results 40 4.4.1 Model Performance 40 4.4.5 Further Analysis on the Effect of Gating 44 5 CONCLUSION 45 Bibliography 47 ๊ตญ๋ฌธ์ดˆ๋ก 51Maste

    Vision-Based Multi-Task Manipulation for Inexpensive Robots Using End-To-End Learning from Demonstration

    Full text link
    We propose a technique for multi-task learning from demonstration that trains the controller of a low-cost robotic arm to accomplish several complex picking and placing tasks, as well as non-prehensile manipulation. The controller is a recurrent neural network using raw images as input and generating robot arm trajectories, with the parameters shared across the tasks. The controller also combines VAE-GAN-based reconstruction with autoregressive multimodal action prediction. Our results demonstrate that it is possible to learn complex manipulation tasks, such as picking up a towel, wiping an object, and depositing the towel to its previous position, entirely from raw images with direct behavior cloning. We show that weight sharing and reconstruction-based regularization substantially improve generalization and robustness, and training on multiple tasks simultaneously increases the success rate on all tasks

    MetaRec: Meta-Learning Meets Recommendation Systems

    Get PDF
    Artificial neural networks (ANNs) have recently received increasing attention as powerful modeling tools to improve the performance of recommendation systems. Meta-learning, on the other hand, is a paradigm that has re-surged in popularity within the broader machine learning community over the past several years. In this thesis, we will explore the intersection of these two domains and work on developing methods for integrating meta-learning to design more accurate and flexible recommendation systems. In the present work, we propose a meta-learning framework for the design of collaborative filtering methods in recommendation systems, drawing from ideas, models, and solutions from modern approaches in both the meta-learning and recommendation system literature, applying them to recommendation tasks to obtain improved generalization performance. Our proposed framework, MetaRec, includes and unifies the main state-of-the-art models in recommendation systems, extending them to be flexibly configured and efficiently operate with limited data. We empirically test the architectures created under our MetaRec framework on several recommendation benchmark datasets using a plethora of evaluation metrics and find that by taking a meta-learning approach to the collaborative filtering problem, we observe notable gains in predictive performance

    Generative Adversarial Networks (GANs): Challenges, Solutions, and Future Directions

    Full text link
    Generative Adversarial Networks (GANs) is a novel class of deep generative models which has recently gained significant attention. GANs learns complex and high-dimensional distributions implicitly over images, audio, and data. However, there exists major challenges in training of GANs, i.e., mode collapse, non-convergence and instability, due to inappropriate design of network architecture, use of objective function and selection of optimization algorithm. Recently, to address these challenges, several solutions for better design and optimization of GANs have been investigated based on techniques of re-engineered network architectures, new objective functions and alternative optimization algorithms. To the best of our knowledge, there is no existing survey that has particularly focused on broad and systematic developments of these solutions. In this study, we perform a comprehensive survey of the advancements in GANs design and optimization solutions proposed to handle GANs challenges. We first identify key research issues within each design and optimization technique and then propose a new taxonomy to structure solutions by key research issues. In accordance with the taxonomy, we provide a detailed discussion on different GANs variants proposed within each solution and their relationships. Finally, based on the insights gained, we present the promising research directions in this rapidly growing field.Comment: 42 pages, Figure 13, Table

    Recommendations for item set completion: On the semantics of item co-occurrence with data sparsity, input size, and input modalities

    Get PDF
    We address the problem of recommending relevant items to a user in order to "complete" a partial set of items already known. We consider the two scenarios of citation and subject label recommendation, which resemble different semantics of item co-occurrence: relatedness for co-citations and diversity for subject labels. We assess the influence of the completeness of an already known partial item set on the recommender performance. We also investigate data sparsity through a pruning parameter and the influence of using additional metadata. As recommender models, we focus on different autoencoders, which are particularly suited for reconstructing missing items in a set. We extend autoencoders to exploit a multi-modal input of text and structured data. Our experiments on six real-world datasets show that supplying the partial item set as input is helpful when item co-occurrence resembles relatedness, while metadata are effective when co-occurrence implies diversity. This outcome means that the semantics of item co-occurrence is an important factor. The simple item co-occurrence model is a strong baseline for citation recommendation. However, autoencoders have the advantage to enable exploiting additional metadata besides the partial item set as input and achieve comparable performance. For the subject label recommendation task, the title is the most important attribute. Adding more input modalities sometimes even harms the result. In conclusion, it is crucial to consider the semantics of the item co-occurrence for the choice of an appropriate recommendation model and carefully decide which metadata to exploit
    • โ€ฆ
    corecore