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Abstract

Since Matrix Factorization based linear models have been dominant in the Col-
laborative Filtering context for a long time in the past, Neural Network based CF
Models for recommendation have started to gain attention recently. One branch of
research is based on using deep generative models to model user preferences and

Variational Autoencoders where shown to give state-of-the-art results.

However, there are some potentially problematic characteristics of the current
Variational Autoencoder for CF. The first is the too simplistic prior VAEs incor-
porate for learning the latent representations of user preference, which may be
restricting the model from learning more expressive and richer latent variables
that could boost recommendation performance. The other is the model’s inability

to learn deeper representations with more than one hidden layer.

Our goal is to incorporate appropriate techniques in order to mitigate the
aforementioned problems of Variational Autoencoder CF and further improve the
recommendation performance of VAE based Collaborative Filtering. We bring the
VampPrior, which successfully made improvements for image generation to tackle
the restrictive prior problem. We also adopt Gated Linear Units (GLUs) which
were used in stacked convolutions for language modeling to control information

flow in the “easily deepening” autoencoder framework.

We show that such simple priors (in original VAEs) may be too restrictive to

fully model user preferences and setting a more flexible prior gives significant



gains. We also show that VAMP priors coupled with gating mechanisms outper-
form SOTA results including the Variational Autoencoder for Collaborative Fil-
tering by meaningful margins on 4 benchmark datasets (MovieLens, Netflix, Pin-

terest, Melon).

Keywords: Recommender Systems, Deep Learning, Neural Collaborative Filter-
ing, Deep Generative Models, Variational Auto-Encoders, Machine Learning, In-

formation Systems

Student number: 2017-29907
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1 INTRODUCTION

1.1 Background and Motivation

Deep Learning is the hot topic in almost every research field in todays’ era and
recommender systems are not an exception. Since the Netflix Prize in 2006, rec-
ommender systems have gained much attention in both academia and industry
with Matrix-Factorization based collaborative filtering algorithms [15, 23, 26] be-
ing the long-standing king in the field of recommender systems. Matrix-Factori-
zation methods have been popular for collaborative filtering because of its’ im-
pressive performance despite its’ simple and intuitive idea of learning latent vari-

ables through matrix decomposition.

However, Matrix-Factorization methods are restricted to linear models and
like other fields of machine learning there has been effort to apply neural networks
and deep learning to recommender systems. Neural networks were used to con-
duct non-linear matrix factorization or learn rich non-linear latent variables of user
preference. The results showed superior results compared to traditional matrix
factorization techniques and recently Neural Network based collaborative filtering

models have started to gain attention.



Deep Learning based Recommender Systems

There have been different kinds of recent studies incorporating deep learning into
recommender systems. There are researches using deep learning for collaborative
filtering. Extending the traditional matrix factorization framework to non-linear
matrix factorization using neural networks [11], session-based recommendation
using recurrent neural networks (RNNs) [12, 24, 37], recommendation with auto-
encoders and generative models [19, 28, 36, 38], and many others including hy-
brid methods using extraction of high-level content features through deep learning

[32, 35].

In this work we focus on the branch of research using autoencoders and gen-
erative models which model latent variables of user preference. Recommendation
can be done by using the latent variables of a given user to reconstruct the users’
history for recommendation. There has been work using vanilla autoencoders [28],
denoising autoencoders [38], and most recently variational autoencoders (VAEs)
[19] to model user preference for collaborative filtering. To the best of our
knowledge, Variational Autoencoders for collaborative filtering currently gives

state-of-the-art results in the context of collaborative filtering.

Variational Autoencoders and Collaborative Filtering

Variational Autoencoders have been at the core of attention in Artificial Intelli-
gence (Al) research in the last year. Especially in the domain of computer vision
and signal processing, deep generative models such has VAEs were used in the
task of image and audio generation. Also, a few shortcomings of the original
VAEs were suggested and many interesting new researches were proposed tailor-

ing VAE:s for better performance in image generation.

-



However, Variational Autoencoders for Collaborative Filtering is in its’ sim-
plest form and there is definitely room left for further improvement. While many
new variations of VAEs are being proposed in the domain of image and audio
generation, there has not yet been much research that has yielded further success

in the Collaborative Filtering task for recommender systems.

1.2 Research Goal

In this work we aim to overcome the problems of Variational Autoencoders in the
task of Collaborative Filtering and appropriately tailor VAEs in order to further
improve model performance and make high quality recommendations. While
many new progresses have been made on VAEs in different domains, not all of
them are suitable for the task of recommendation while some of them are. Our
work incorporates ideas from different domains such as computer vision and nat-
ural language processing (NLP) to help Variational Autoencoders to better model

user preferences for recommendation.

1.3 Enhancing VAEs for Collaborative Filtering

Two main motivations led our research. 1) The current prior distribution used in
VAEs may be too restrictive for the Collaborative Filtering task, hindering the
models from learning richer latent variables of user preference which is crucial to
model performance. 2) Learning from user-item interaction history is different
from learning from pixels (images) and may have its’ own more effective archi-

tectures to model the characteristic of such data.



Flexible Priors

Original VAEs, including the research of VAEs for Collaborative filtering, use a
unimodal multivariate standard Gaussian distribution for the prior distribution of
the latent variables. The encoder, is trained to encode each data point to a posterior
distribution matching the prior distribution of the latent variable. The main idea
behind using such a simple prior distribution is that a flexible neural network is
used as an encoder, expecting that whatever prior distribution we choose the en-
coder network will learn a posterior distribution matching the prior. However, this
is a very idealistic assumption that the Encoder (and Decoder) will capture all the
complex dependencies and factor the latent variables to a very simple distribution.
There has been research in domains of image generation that this is not the case
in real world applications, which lead to the question: could this also be hurting

the expressiveness of latent variables learned by VAEs in Collaborative Filtering?

We implement Hierarchical Variational Autoencoders with VampPrior (Var-
iational Mixture of Posteriors Prior) to learn richer latent representations of user
preferences from interaction history. VampPrior is a very recent idea found effec-
tive in image generation relaxing the original restrictive prior to a more flexible
prior which is an approximation to the optimal prior w.r.t the Evidence Lower

Bound (ELBO).

Gating Mechanisms

Another variation we adopted different from the original research of VAEs for CF
is that we used Gated Linear Units (GLUs) to successfully increase the depth of
our model. Gated Linear Units are similar to Gated Recurrent Units (GRUs) in

Recurrent Neural Networks. While GRUs control the information flow during the

4.



recurrent process of RNNs, Gated Linear Units control the information flow of
the information upstream starting from the data at the bottom of the network to

the output.

The Gating Mechanism enables to effectively control information flow of
deep networks by learning when each item or feature contribute to certain units.
Coupling the Gating Mechanism with the aforementioned VampPrior signifi-
cantly boosted the performance of the Variational Autoencoding CF framework

and outperformed current state-of-the-art Collaborative Filtering algorithms.

1.4 Experiment

Experiments were carried out on three popular public benchmark datasets and one
private dataset of different domains and size: MovieLens 20M, Netflix, Pinterest
and Melon. Our proposed method was compared to baseline models including
state-of-the-art Matrix Factorization and Autoencoder based methods. Evaluation
was done under the strong generalization setting where users were split into
train/validation/test sets so that all click history information of a held-out user (for

evaluation) was totally blocked at the training step.

1.5 Contributions
The key contributions of our work are as follows:

*  Our work is the first to address the restrictive prior problem for the VAE-
CF framework and shows that relaxing the prior to a more flexible distri-

bution yields better recommendation performance.

*  We show introducing gating mechanisms are also very helpful for
-5-



autoencoder based CF in learning deeper and more sophisticated repre-

sentations of interaction history.

Our proposed model using hierarchical VAEs with VampPrior and Gated
Linear Units gives new State-Of-The-Art results on standard benchmark

datasets in the task of collaborative filtering.



2 RELATED WORK

Prior studies which were essential to our research are arranged in four main
themes: Collaborative Filtering, Deep Generative Models (VAE), Variational Au-
toencoders for Collaborative Filtering, Recent research in Computer Vision &

Deep Learning.

2.1 Collaborative Filtering

Today, the immense size and diversity of Web-based services make it nearly im-
possible for individual users to effectively search and find online content without
the help of recommender systems. Recommender systems is a domain in machine
learning which has the goal of understanding and modeling the factors of user
preference and predicting future behavior. Due to its direct practical use in e-com-
merce and close relatedness to human behavior, recommender systems are an im-

portant topic receiving much attention from both academia and the industry.

Collaborative Filtering (CF) is a popular technique used in recommender sys-
tems and designates a whole class of machine learning algorithms that uses col-

laborative information of users, items, etc. for recommendation. Collaborative
-7 -



Filtering algorithms usually consume a very large history of user-item interaction
to make personalized recommendations. The key idea of Collaborative Filtering
is that people often get the best recommendations from someone with tastes sim-
ilar to themselves. Collaborative Filtering uses the user-item interaction history to
leverage information about the user preferences and make recommendations

based on users with similar interest.

The boom of Collaborative Filtering algorithms was steered by the Netflix
Prize. The Netflix Prize in 2009 was an open competition to develop to best col-
laborative filtering algorithm to predict user ratings for films, using the previous
user-item consumption history. The competition was held by Netflix with a grand
prize of $1,000,000 and triggered an explosive attention to the field of recom-
mender systems. The winning solution of the Netflix Prize was an ensemble of
predictors based on neighborhood models, Matrix-Factorization models and Re-

stricted Boltzmann Machines (RBM).

In this section, we first review traditional neighborhood models and Matrix-
Factorization based CF methods that has been the most popular in the field of
recommender systems for a long time. Then we get to a more recent approach
incorporating neural networks which is very closely related to our research: an
Autoencoding framework to perform Collaborative Filtering. The Autoencoder
also has a connection to the Restricted Boltzmann Machine (RBM) in the sense

that they are an unsupervised latent variable model.

2.1.1 Traditional methods & Matrix-Factorization based CF

Traditionally Collaborative Filtering methods could be divided into neighbor-

hood-based methods and model-based methods. Nowadays CF algorithms are

-8-



mostly model-based, including the Matrix-Factorization based methods and Neu-

ral Network based methods.

Neighborhood-based methods

Before the Matrix-Factorization based CF gained popularity, a common Collabo-
rative Filtering method was the neighborhood-based approach and had the form
of user-based CF and item-based CF. User-based CF for example is made up of

the following two steps:
1. Calculate users who have similar consumption patterns as the given user

2. Use the ratings from the similar users of step 1 to calculate the predicted

ratings of items for given user

Item-based collaborative filtering follows similar steps in an item-centric manner.
These methods were called Neighborhood-Based approaches as it finds explicit
neighbors to calculate predicted ratings from. The subsequent Matrix-Factoriza-

tion Collaborative Filtering can be categorized as a Model-based approach.

Recommender systems
Collaborative filtering (CF) Content-based approach Hybrid models
(CF + Content-based
approach)
A
. Hybrid models
Nelgh:on:ggccir-‘based Model-based approach (Neighborhood-based +
pp Model-based approach)

Figure 2-1. Types of Collaborative Filtering in Recommender Systems

-9.



Matrix Factorization CF

While neighborhood-based approaches took a user-centric or an item-centric
viewpoint to make recommendations, Matrix-Factorization methods learn user la-
tent factors and item latent factors simultaneously. The initial idea was formed by
applying low-rank matrix decomposition techniques on the user-item history ma-
trix such as Singular Value Decomposition (SVD) and Principle Component

Analysis (PCA).

A simple form of Matrix-Factorization Collaborative Filtering is as follows.
For every user item pair u,i the user’s rating for the item can be predicted as

below.

Pui = XY
x, € R? is the latent vector of user u and y; € R? is the latent vector of item
i. The dimension of the latent vectors d is usually much smaller than the size of
users or items (d < N, M). The latent vectors X € R¥N*? and Y € RM*? can be

learnt through optimizing the following objective function for all w,i pairs that

have a given rating (or all pairs with unobserved ratings as 0):

min PR ADEFICHRN
" *rui is known

A is a regularizing parameter to control for the norm of x,, and y;. A diagram

visualizing the Matrix-Factorization algorithm can be seen in figure 2-2.

-10 -



— T = Tt O

Q

Figure 2-2. Visualization of Matrix-Factorization CF

Recently, researches focus more on implicit feedback of users such as click
or purchase rather than explicit ratings. The reason is that many users using Web-
based services do not bother to give explicit ratings to the items they consumed
and therefore explicit feedback is hardly available. A popular realization of Ma-
trix-Factorization CF on implicit feedback is the Weighted Matrix-Factorization

(WMF) algorithm [15].

First, it models binary variables p,,; indicating implicit preference of user u
toitem i. The p,; values can be derived by binarizing the r,; values in the ex-

plicit case:

_{1 rui>0
Pui =10 1, =0

And the model can be computed by minimizing the corresponding objective func-

tion:

min " cu(pu = ¥0? +A0Q) Ixull? + ) ill?)
i u i

u,i

Cyi 18 a confidence level or weight chosen by the researcher reflecting the amount

of preference or importance of the user-item pair. c,; may set to incorporate the

-11 -



value of ry; or simply the existence of interaction if only implicit data is availa-

ble.

The Matrix-Factorization model can be optimized in various ways: applying
matrix decomposition (SVD, PCA, ...) directly on the preference matrix, Stochas-
tic Gradient Descent (SGD), Alternating Least Squares (ALS) and more. Also, the
MF model can be further extended by adding additional terms in the model for-
mula. User and item intercepts, temporal dynamics, content and contextual fea-
tures are popular choices. There are also probabilistic versions of MF so called
Probabilistic Matrix Factorization (PMF) by using probabilistic graphical models

to solve the Matrix-Factorization problem.

Matrix-Factorization methods for Collaborative Filtering have been thor-
oughly researched and used in many industrial applications. It has impressive per-
formance despite its simplicity and also scales to large size datasets making it
favorable to industrial applications. However, one important drawback is that MF
methods are restricted to linear models. This led to the research of using neural
networks, a non-linear universal function approximator, in the field of recom-

mender systems.

2.1.2 Autoencoders for Collaborative Filtering

Even though Matrix-Factorization based methods of CF had many advantages,

there were needs of more sophisticated non-linear modeling in CF. The heroic

breakthroughs Neural Networks (NN) has made in other domains such as object

recognition in ImageNet has led attempts to apply Neural Networks to Collabora-

tive Filtering. NN based CF methods conduct non-linear transformation tech-

niques to model user-item preferences. The ability of Neural Networks to conduct
-12-

A ==

1] O 1 &)

s



non-linear transformations was shown to improve the performance of recom-

mender systems compared to the traditional linear models.

Neural Network based CF

Several branches of research using Neural Networks for Collaborative filter-
ing are being actively studied. The most typical is Non-Linear Matrix Factoriza-
tion, it uses the Neural Network architecture to learn non-linear latent factors of
users and items. The latent factors go through several layers of a Multilayer Per-
ceptron (MLP) to predict the user-item rating. This is different from the original
linear Matrix-Factorization in the sense that it can learn any non-linear function
of the two latent factors instead of just the dot product. Figure 2-3 shows a diagram

of Neural Collaborative Filtering [11] conducting non-linear matrix factorization.

¢a Training

Score Ja— { y,; | Target

Qutput Layer "&!/ Fui) 1278
/

4 Layer X 3
Neural CF Layers ’—Laytr‘

Layer 1 ]
AN ™~ v
- ‘\\ —
Embedding Layer [user Latent Vector | [Item Latent vector
T Py = P} T Q= )
Input Layer (Sparse) |0|D|Dn olof - | [elofo a2l o] — |
User (i) Item (i)

Figure 2-3. Neural Collaborative Filtering Framework [11]

Another line of studies uses Recurrent Neural Networks (RNNs) to make Ses-
sion-based recommendations. RNNs take in the sequence of item IDs in a given
session and predict the next item likely to be consumed. The user ID need not to

be tracked and the sequence of item IDs in the session recurrently updates the

-13 -



hidden state of the model. The model predicts the next item based on the current
hidden state. A popular work is the Session-Based Recommendations with Recur-

rent Neural Networks [12] shown in figure 2-4, advances of the research continued

after on [24, 37].

Figure 2-4. Session-Based Recommendations with RNNs [24]

Algorithms using Autoencoders and Generative models also take a position
in the lines of research in NN based recommendation. This line of research is di-

rectly connected to this current work and will be discussed in more detail as we

£0 on.

There are more various kinds of studies incorporating Neural Networks for
recommendations. A popular method is using NNs for extracting deep content
features from the items [32, 35]. There are also Autoregressive methods [41],
Deep Reinforcement Learning based methods [40], and much more. In this work

we focus on the works using autoencoders and generative models for recommen-

dation.

Output: scores on items
.H\"'». I -

GRU layer

=

GRUlayer <
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Autoencoder based Recommendation

The Autoencoder based recommendation algorithm was first proposed as Auto-
Rec [28] by Sedhain et al. Autoencoders are similar to RBMs in the fact that they
are unsupervised latent variable models and they can become the same under cer-
tain objectives [34]. RBMs explicitly model the joint distribution of the Aidden
and visible variables. Autoencoders are much more intuitional, consisting of the

input, encoder, latent code, decoder, and reconstruction.

Autoencoders take in whatever input and encodes it into a latent code, typi-
cally in a lower dimension. The decoder then decodes the latent code to recon-
struct the original input. The difference between the original input and recon-
structed input, namely the reconstruction error, is used as the objective function

to train autoencoders.

See figure 2-5 for an example of using Autoencoders for collaborative filter-

ing [28].

r® = (B

Figure 2-5. Collaborative Filtering with Autoencoders [28]

-15 -



The input of the autoencoder in the case of collaborative filtering is the rating
history r(® of a specific user i. r® isa vector of size N, the of the number of
items with the given users’ ratings for each item if rated (it can be binary in the
case of implicit feedback). The encoder learns a low-dimension mapping from the
input to a latent variable which can be interpreted as the users’ preference. The
decoder then tries to reconstruct the original ratings from the users’ preference. Its
prediction gives estimates for the missing (unobserved) ratings and they can be

used for recommendation.

A one-layer Autoencoders reconstruction of input 7 € RN can be written as

the following,
h(r;0) = fW-g(Vr + p) + b)

with activation functions f(), g(), parameters 6 € {W,V,u, b} with transfor-
mations W € RNk vV € R¥*N and biases pu € R¥, b € RN. This is a 1-layer
AutroRec model with k-dimensional latent code. The Model can be trained fol-

lowing the optimization of the objective function:
- A
min " [[f® = h(x®; 02 + - AWIE + IVIIE)
i=1
with A as the regularization parameter.
The AutoRec approach [28], which is the algorithm of using vanilla autoen-

coders for collaborative filtering, was shown to give superior results compared to

linear MF methods and RBM methods.

Further research was made using Denoising Autoencoders (DAEs) [38]. Ran-
dom noise was injected at the input layer of the autoencoder, and the model was

trained to reconstruct input r € RN from its (partially) corrupted version #. The

-16 -



noise was anticipated to force the hidden layer discover more robust features and
prevent it from simply learning the identity function. The noise injection tech-
nique had positive regularization effects and further improved the model perfor-

mance of autoencoder based CF.

2.2 Deep Generative Models (VAEs)

Deep Generative Models are in the spotlight of Al and Machine Learning research
today. It has eye-catching outputs bringing much interest to the potential of Al
research (see figure 2-6). Deep Generative Models have been successful in do-

mains such as image generation, voice synthesis, style-transfer and more.

Deep Generative Models are generative models using the power of Deep
Learning. Generative models aim at learning the underlying true data distribution
from training data. If we can recover the data probability distribution P(X) we
can do almost everything we want with data: conduct arbitrary inference through
conditionalization and marginalization (regression and classification are also in-

ference), generate new samples from the data distribution X,,.,,~P (X).

Two most commonly used and efficient approaches are Variational Autoen-
coders (VAEs) and Generative Adversarial Networks (GANSs). Variational Auto-
encoders explicitly model the data distribution by maximizing the lower bound of
the data log-likelihood and Generative Adversarial Networks implicitly learn the

data distribution through adversarial training.

In this section we will focus on Variational Autoencoders (VAEs) as it is the
base framework used in our research for recommendation. We review the idea of

general VAEs and how it is trained through Variational Inference.

-17 -
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Figure 2-6. Style-Transfer with Deep Generative Models [7]

2.2.1 Variational Bayes

Variational Bayes, or Variational Bayesian methods are a family of techniques for
approximating intractable integrals arising in Bayesian inference and machine
learning. In the setting where there are unobserved latent variables and observed
training data, Variational Bayes can be used to make analytical approximations to
the true intractable posterior probability of latent variables which in turn can be
used to derive a lower bound for the marginal likelihood of the observed data.
This lower bound, so called the Evidence Lower Bound (ELBO) can be used to
optimize the Variational Autoencoder (VAE). We will see the detailed implemen-

tation of the idea for the VAE framework in the following section 2.2.2.

2.2.2 Variational Autoencoders

A Variational Autoencoder (VAE) [16] is a generative model which attempts to
model the data distribution p(X) with the assumption there exists a latent struc-

ture z using neural networks.

-18 -
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The scenario consists of two steps: (1) a value z* from some prior distribu-
tion pg-(2) is generated, (2) a data point x' is generated from the conditional
distribution pg~(x|z). The distributions are parameterized by 6 with the true pa-
rameters 6 and we would like to find them by maximizing the marginal likeli-
hood pg(x) = [ pg(x]2)pe(2) dz w.r.t 6. However, we would like to use the
expressive deep neural networks to model the generation process pg(x|z) which

then makes the marginal likelihood pg(x) and true posterior pg(z|x) =

pe(X|Z)pe(2)

intractable.
pe(x)

Variational Autoencoders solve the problem using the Variational Bayes ap-
proach. In order to do so, we set a generative model (decoder) pg(x|z) which is
a neural network parameterized by 6, a prior distribution of latent variables
pa(2), and an approximation to the unknown posterior pg(z|x) with a recogni-

tion model (encoder) qg(z|x) also with neural networks.

The Variational Lower Bound

We will be applying Stochastic Gradient Decent (SGD) methods for batches of
data and the marginal log-likelihood is composed of the sum of the marginal log-
likelihood logpg (x(i)) for each data point in the batch. Using the generative
model, recognition model and prior defined above, each marginal log-likelihood

can be rewritten as:

logpg (x) = Dys (a9 (2lx“) [pe (z[x)) + £(6, #;xV)

Since the Kullbak-Leibler divergence can take on only non-negative values, the
second term of the RHS becomes a lower bound of the marginal log-likelihood.

Which is the following:
-19-



£(8,¢;x?) = =Dye1 (a5 (2|x V) |ps (@) + B, x5 [log pe xV[2)]

This is Variational Lower bound also called the Evidence Lower Bound (ELBO)
[16]. The objective is to optimize the lower bound w.r.t both the encoder parame-
ters ¢ and decoder parameters 6 in order to indirectly optimize the marginal

log-likelihood.

Standard Normal Prior

The Variational Autoencoder chooses the prior distribution of z as the standard
normal distribution considering that we used a flexible neural network for approx-
imating the posterior. This leads to an analytic solution to the KL-divergence part

of the ELBO resulting in a realization of the following:

log g (z|x¥) = log v (z; u®, 02(01)

L i i i 1 ¢ i), G
£(0,¢;x9) = 53 (14+10g((05")?) — (u5)? = (0§7)?) + £ 3 logpe(xV]z()
=1

=1
where z®) = pu9 4+ 6@ @l and €¥ ~ N(0,T)
L is the number of samples used to approximate the negative reconstruction error
which can be set to 1 for a large enough batch size. The aggregated ELBO will be

optimized to train the model.

2.3 Variational Autoencoder for Collaborative Filtering

After the attempt of using vanilla Autoencoders [28] and Denoising Autoencoders
[38] for collaborative filtering, the Variational Autoencoder was adapted for col-
laborative filtering [19]. To the best of our knowledge, the Variational
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Autoencoder for Collaborative Filtering currently shows the state-of-the-art
(SOTA) performance and is one of the most important researches to our proposed

work.

2.3.1 VAE for CF

Variational Autoencoders for CF uses the VAE framework in the task of Collab-
orative Filtering. It has a few adaptions such as introducing the beta parameter
controlling the impact of the prior and using the multinomial likelihood to calcu-

late the reconstruction error instead of the original binary cross-entropy.

The model starts by sampling a K-dimensional latent representation z* for
each user u from a standard normal prior distribution and is transformed by a
neural network generative model to produce the probability distribution over the
user’s item consumption history x*, a bag-of-words vector indicating whether

the user has consumed each item, assuming a multinomial distribution:
Zy ~ N(O, IK): TL'(Zu) X EXp{fG (zu)}

X, ~ Multi(N,, 7 (z,,))

fo () is a non-linear function parameterized by 6 and m(z,) is the probability
vector over the entire item set. Then the same Evidence Lower Bound (ELBO)

can be derived as in section 2.2.2:

logp(x,; 0) = Eg, (7, |x,)[108Ps (%u|2)] = KL (5 (Zu %) 1P (2:))
= L(x,;0,¢9)

po(x|2) is the generative model and qg(z|x) is the recognition model (varia-

tional posterior).
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The model makes slight changes to ELBO by introducing the parameter f3
to control for the impact of the KL-divergence term and takes it as the new objec-

tive function [19]:

Lp(%,;8,8) = By 7, x,) 108 Pe (xul2,)] — B - KL (94 (zulx) I (2.) )

If we look at the objective function, the first term of the RHS is the negative re-
construction error (this is the objective function of vanilla autoencoders) while the
second term is a regularizer forcing individual posteriors of data points to match
the prior of z. The new objective added the [ parameter too loosen the effect of
KL-divergence for better recommendations. The idea was that posterior and prior
need not to match as much in the task of collaborative filtering. We only need to
reconstruct the original user history to make predictions for unseen items, we do

not want to sample from a random z to generate new samples from pg(x).

Adequately tuning the parameter § led to superior performances compared
to prior autoencoder based CF algorithms (obviously it beat linear MF methods as
well) and showed state-of-the-art performance for Collaborative Filtering. See fig-

ure 2-7 for a taxonomy of autoencoders used for CF.

It can be interpreted that the VAE framework, learning a stochastic latent
representation of the user preference, acted as a regularizer and helped the model

to learn more useful representations.
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Figure 2-7. Taxonomy of autoencoders used for CF [19]

Is this the best we can do?

However, in this original research of VAEs for CF the variational posterior (dis-
tribution of latent variables) of the data is pulled towards a very simple standard
normal distribution. To make things worse, the model is shallow with one hidden
layer (simply adding more layers does not improve performance). What this
means is that we should be suspicious of the ideal assumption that the encoder is
currently capturing all the complex dependencies and factoring the latent variables
to a very simple distribution. If this is not the case, the simple standard normal
prior may be restricting the model from learning richer latent representations

which is crucial to making recommendations with CF.

In our work we claim that we need a more effective structure to help the
model learn deeper representations and a more flexible prior that will not restrict

the model from learning richer latent representations.
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2.4 Recent research in Computer Vision & Deep Learning

VAEs for CF currently shows the state-of-the-art results on Collaborative Filter-
ing, but as we pointed out at the end of the last section there are some questions

to be answered.

To tackle the proposed problems, we incorporated techniques developed in
different domains such as computer vision and natural language processing. The

two main ideas we borrowed are from VAE with VampPrior [31] and Gated CNN
[4].

2.4.1 VampPrior

There have been a line of research concerning the simple prior of vanilla VAEs
[13, 20, 31]. A recent research [31] proposed the “Variational Mixture of Posteri-
ors” prior, or VampPrior for short, and showed successive results in the domain
of image generation. It showed that relaxing the original restrictive prior by setting

a more flexible prior improved performance.

The motivation of VampPrior starts from the Evidence Lower Bound (ELBO) we
saw previously in VAEs. The ELBO, originally interpreted as the negative recon-
struction error and KL-divergence term, can be further decomposed into three

terms:

L0, P, ) = Exq []Eq¢(Z|X) [log pe (xlz)]]
+Ey-q00 |H[q4 0] |
—E;q[—logpi(2)]
Maximizing L(¢, 6, 1) is our objective while the third term is made up of the
prior distribution p,(z) which is chosen in advance as the standard normal
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distribution. However, one could find a prior that optimizes the ELBO w.r.t the
prior by solving the Lagrange function. Solving the problem simply gives the ag-

gregated posterior as the optimal prior:

N
1
Pi@ =5 ) dp(@lx)
u=1

However, using this choice as the prior will potentially lead to overfitting and
computational issues. Therefore, the VampPrior proposes an approximation of the

aggregated posterior by a mixture of variational posteriors with pseudo-inputs:

K
1
pa(®) =3 ) dg(aluy)
k=1

with K « N as the number of pseudo-inputs and u; the N-dimensional (size
of item set) vector of the pseudo-input. The values of pseudo-inputs are learned
through backpropagation during training and can be viewed as hyperparameters
of the prior. If we look at the shape of the prior we can see that it is the form of a

mixture of gaussian distribution, resulting in a multimodal distribution.

One interesting aspect is that the VampPrior is comprised of the variational
posterior (encoder). The work claims that the prior and encoder will “cooperate”

during training to yield helpful results.

2.4.2 Gated Convolutional Neural Network

The study of gated Convolutional Neural Network (CNN) was proposed as an
application of natural language processing [4]. It introduced the Gated Linear Unit
(GLU) and used it with stacked convolutions to produce superior results in lan-
guage modeling compared to previous models.

-25 -



Gating mechanisms in neural networks can control the path of how infor-
mation flows through the network and have been proven to be useful for Recurrent
Neural Networks (RNNs). Long Short-Term Memory networks (LSTMs) are a
popular choice of gated networks that control the information flow of each cell by
activating the input and forget gates. Gating mechanisms mitigate the problem of
vanishing gradients during the recurrent structure and selects how to aggregate the

sequential information passed on the network.

As the structure of Neural Networks get deeper and deeper, non-recurrent
neural nets also have the problem of being unable to properly propagate infor-
mation from the bottom layer to the top. Following this idea, Gated CNNs applied
gates to the non-recurrent CNN architecture and introduced Gated Linear Units

(GLUs).

Gated Linear Units consider only output gates, which allow the network to
control what information should be propagated through the hierarchy of layers. It

has a relatively simple form as shown below:
hX)=X*W+b)Q® c(X*V+c)

With X the input of the layer and W, V, b, ¢ learned parameters, o is the sig-
moid function. As we can see from the formula, how the gates react on the given
transformation of the input (X * W + b) is also different depending on the cur-
rent input. This can also be interpreted as potentially increasing the network’s

modeling capacity.

Gated Linear Units can also be compared to Rectified Linear Units (ReLUs).

We can express the ReLU function as the following:

ReLUX) =X ® (X > 0)
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Then the ReLU can be seen as a simplification of GLUs with a fixed deterministic

gate depending on the sign of the input.

The Gated Linear Units made a vast difference and provided useful modeling
capacity in the task of language modeling. Since many word-level NLP techniques
also work well with item recommendation techniques (such as the Word2Vec al-
gorithm which is also popular for learning item representations for recommend-
ers), there is potential that the Gating Mechanism will be helpful to recommender

systems.
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3 Method

Many forms of neural network based Collaborative Filtering (CF) systems are be-
ing proposed and the Variational Autoencoder (VAE) framework for CF is show-
ing state-of-the-art (SOTA) performance [19]. However, we see some potentially
problematic characteristics of the current Variational Autoencoder CF framework.
The first is the too simplistic prior VAEs incorporate for learning the latent repre-
sentations of user preference, which may be restricting the model from learning
more expressive and richer latent variables that could boost recommendation per-
formance. The other is the model’s inability to learn deeper representations with

more than one hidden layer.

Our goal is to incorporate appropriate techniques in order to mitigate the
aforementioned problems of Variational Autoencoder CF and further improve the
recommendation performance of VAE based Collaborative Filtering. We bring
the VampPrior, which successfully made improvements for image generation [31]
to tackle the restrictive prior problem. We also adopt Gated Linear Units (GLUs)
which were used in stacked convolutions for language modeling to control infor-

mation flow in the “easily deepening” autoencoder framework.
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Thus, our proposed model can be summarized as an extention of the original

Variational Autoencoding CF with VampPrior and GLUs.

3.1 Flexible Prior

In this section we describe the methods we used including flexible priors in order

to learn richer latent representations of user preference.

3.1.1 Motivation

As we have seen in section 2.3.1 the Variational Autoencoder for CF attempts to

maximize the following objective function:

Lo(%,;8,8) = By 7, x,) 108 Pe (xul2,)] — B - KL (44 (zulx0) I (2.) )

Which is a modified version of the Evidence Lower Bound (ELBO), a lower
bound on the marginal log-likelihood p(X). If we look at the objective, the first
term can be interpreted as the negative reconstruction error while the second KL
term acts as regularizer pulling the variational posterior towards the prior p(z).

This results in shaping the aggregated posterior close to the prior.

Giving restrictions to the aggregated posterior (rather than letting it be scat-
tered everywhere) acts as a regularizer and helps the model learn more meaningful

latent representations. Which, in turn helps the recommendation performance.

However, the prior p(z) is chosen in advance as the multivariate standard
normal distribution. This distribution is unimodal with no covariance structure.

Which means the encoder is forced to learn a mapping of user preferences were
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the latent representation matches a very simple unimodal distribution. A question

arises, “is this reasonable?”

The original idea of using standard normal priors comes from an idealistic
assumption: the neural network will capture all the complex dependencies and
factor the latent variables to a very simple distribution. Neural Networks are in-
deed flexible and theoretically universal function approximators, but does the as-

sumption really hold for the current context of Collaborative Filtering?

Modeling human preference is a very complicated task, looking at the metrics
such as recall@k of current CF algorithms gives the feeling that the models are
not yet near perfection. Furthermore, the current autoencoder based CF algorithms
(AE, DAE, VAE, ...) fail to learn deep representations of more than 1 hidden
layer. Overall, it becomes plausible that the ideal assumption is currently not the
case and the too simplistic prior may be restricting the model from learning richer

representations. This calls for a need to replace the prior to a more flexible one.

3.1.2 VampPrior

The Variational Mixture of Posteriors prior (VampPrior) [31] is a recently pro-
posed type of prior which is derived by analyzing the variational Evidence Lower
Bound (ELBO). VampPrior consists of a mixture of gaussian distribution were
components are given by the encoder (variational posterior) conditioned on learn-

able pseudo-inputs. The VampPrior looks like the following:

K
1
pa(z) = EZ q¢(z|uy)
k=1
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u, are trainable pseudo-inputs and K(<«< N) is the number of pseudo-inputs

which controls the level of flexibility. Since individual g4 (z|uy) are gaussians,

the resulting distribution becomes a mixture of gaussians which is multimodal.

Our model is modified to use the VampPrior as the prior distribution. The
prior now indirectly learns from data the appropriate distribution by referring to
the encoder distribution and is also multimodal, making the prior much more flex-
ible compared to the original standard normal prior overall. The level of flexibility
is controlled by K and calculation of the KL divergence (in the objective func-

tion) can be done through Monte-Carlo estimation.

3.1.3 Hierarchical Stochastic Units

In order to learn even richer latent representations, we also followed the approach
in VampPrior [31] to change the original latent variable z to a stacked hierar-
chical structure of z; and z,. There are now two layers of stochastic latent vari-

ables instead of one. A visual diagram of the new hierarchical structure is shown

is figure 3-1.
Hierarchical
Zy QZz
Original Y
. O o« On
- O NG
generative part variational part generative part variational part

(a) (b)

Figure 3-1. Diagram comparing the original and hierarchical stochastic layers
[31]
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The variational part of the Hierarchical VAE is now:
¢ (z11%,2) Qy (z21%),
and the generative part as follows:

po (X121, 25) p3(21122) p(27)

with p(z;) given by a VampPrior, {¢,y} the variational parameters and {6, 1}

the generative parameters.

3.2 Gating Mechanism

In this section we describe the gating mechanism adopted in our proposed model

to help learn deeper representations and increase model capacity.

3.2.1 Motivation

The autoencoding framework consists of the following: input, encoder, latent var-
iables, decoder, reconstructed input. Due to the presence of the encoder and the
decoder, as we increase the number of hidden layers the depth of the total network
increases much faster. Since in our case we use two layers of latent variables, a
VAE with 1 hidden layer actually ends up with a network of depth 2 * (1) + 2 =
4 and a VAE with 2 hidden layers a depth of 2 * (2) + 2 = 6. Eventually, an
autoencoder with only a few hidden layers end up as a relatively deep structure

(see figure 3-2 for a visualization of a 2-layer autoencoder).
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Figure 3-2. Visualization of a 2-layer Autoencoder (the depth of an autoencoder
end up relatively deep)

The current problem is, the autoencoder based CF algorithms are having trouble
learning representations of more than 1 hidden layer. Preceding researches using
vanilla Autoencoders, Denoising Autoencoders, Variational Autoencoders did not
achieve significant performance gain by adding additional hidden layers. We an-
ticipate two reasons for this. (1) The nature of the data, extracting preference from
consumption history is a complex problem and the current NN structure may not
be effectively enforcing it. (2) The relatively easily deepening autoencoder struc-
ture, deep neural networks are hard to train because information may not properly

propagate through the whole network.

Our model adopts Gated Linear Units to control for the information flow of
the deep network in order to help train deeper networks. The gating mechanism
can also be interpreted as increasing the capability of individual units to capture

more complex dependencies.
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3.2.2 Gated Linear Units (GLUs)

Gating mechanisms are commonly used in Recurrent Neural Networks (RNNs) to
control the path of how information flows through the long recurrent process.
Gated Linear Units (GLUs) are a Gating Mechanism that can be used in Non-

Recurrent Networks to control information flow in deep networks.

As seen in section 2.4.2, the Gated Linear Unit has a simple formulation as

the following:
hX)=X*W+b)Qc(X*V+c)

The gate retains the non-linear capability of the unit so no additional activation
function is needed. X is the input of the layer, W, b are linear transformations
applied to X and V,c are learned parameters for controlling the gates. o is the

sigmoid function.

We adopt the Gated Linear Units as the default type of unit for all units in the

network.
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4 EXPERIMENTS

Experiments were conducted to evaluate the effect of flexible priors, hierarchical
stochastic units and gating mechanisms in the context of collaborative filtering.
Our proposed models are compared to other state-of-the-art collaborative filtering
models. The experiments were made on three popular benchmark datasets (Mov-

ieLens, Netflix, Pinterest) and one private dataset (Melon).

4.1 Setup

The problem setup is for the Collaborative Filtering algorithms to make recom-

mendations using binary implicit feedback. The models can use only the pure

user-item interaction history with no information about the context or item content.

4.1.1 Baseline Models

We use the most popular Matrix Factorization models and state-of-the-art Auto-

encoder models as baseline models to compare with our model.

*  Weighted Matrix Factorization (WMF) [15]: A linear low-rank matrix
-35.-
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factorization model trained with alternating least squares. The model is
explained in detail in section 2.1.1. The weights on all the 0’s were set to
1 and the weights on all the 1’s were tuned among {2, 5, 10, 30, 50, 100}.
Also the dimension of the latent representation was set between {100,

2001

SLIM [23]: A linear model which learns a sparse item-to-item similarity
matrix through solving a L1-regularized constrained optimization prob-

lem. The regularization parameters were searched over {0.1, 0.5, 1, 5}.

Collaborative Denoising Autoencoder (CDAE) [38]: An autoencoder
collaborative filtering model with additional noise injection and per-user
latent factor in the input. The noise injection is used for learning more
robust representations and is explained in section 2.1.2. The latent di-
mension was set to 200 with tanh activations for the network. Since the
number of parameters for CDAE grows linearly with the number of users
and items, overfitting was controlled by applying weight decay with the

parameter examined over {0.01, 0.1, ..., 100}.

Multi-VAE [19]: Variational autoencoder with multinomial likelihood.
The model is thoroughly explained in section 2.3 and was shown to
achieve state-of-the-art results in the collaborative filtering context.
Modeling the per-user variances in the latent state z,, led to superior re-
sults compared to the original autoencoder. Tanh activations were used
and parameters such as beta, dimension of the hidden layers and latent
state are tuned in accordance with all the other proposed models follow-

ing 4.3.
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4.1.2 Proposed Models

Models to evaluate the individual effects of flexible priors, HVAE, and gating are

the following.

*  Multi-VAE (Gated): The Multi-VAE model with gating mechanisms.
Gated Linear Units were used for all hidden units in the network. This
model was studied for the individual effect of gating on the original VAE

for CF and comparison.

*  Vamp: Variational autoencoder with a VampPrior as the prior distribu-
tion instead of the original standard gaussian prior. We can compare with

Multi-VAE to evaluate the effect of using flexible priors.

* H + Vamp: Hierarchical VAE with the VampPrior, the difference to the
Vamp model is that it has hierarchical stochastic units to model the latent

representation.
Our final proposed model:

* H + Vamp (Gated): Our final model, additional gating mechanisms are
applied to the H + Vamp above. Gated Linear Units are used for all hid-

den units in the network.

4.1.3 Strong Generalization

The performance of various models was evaluated under the strong generalization
setting [19, 21]. All users are split into training/validation/test sets. Models are
trained using the entire click history of training users. For evaluation, we take 80%
of the click history from the validation (or test) dataset to calculate the necessary
user-level representations and predict the remaining 20% of the dataset.
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4.1.4 Evaluation Metrics

We use the metrics NDCG@K and Recall@K to evaluate the performance of the
models. Recall@K can be interpreted as a metric that calculates how much the
top-k prediction of the model is actually in the held-out test set. Truncated Nor-
malized Discounted Cumulative Gain (NDCG@K) is a metric that also considers

the rankings of the top-k prediction of the model.
Recall@K:

k=1 lw(k) € L]
min(K, |L[}

Recall@K (u, w) :=

NDCG@K:

K

2llw(k)en] _ 1
DCG@K(u, w) := 2 —_
k=1

log(r + 1)

NDCG@K is the DCG@K normalized by dividing by the best possible DCG@K,

where all held-out items are ranked at the top.

4.2 Datasets

The baseline models and proposed model were evaluated on four datasets. Three
are popular benchmark datasets: MovieLens, Netfilx, Pinterest. The other is data

from the largest music streaming platform in Korea: Melon.

*  MovieLens: the public MovieLens 20M dataset. Ratings are binarized by
keeping only ratings of four or higher, interpreting them as implicit feed-

back. We only keep users who have watched at least 5 movies.
e Netflix: benchmark dataset used at the Netflix Price. Similar to ML20M,
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explicit feedback is binarized by keeping ratings of four or higher. We

only keep users who have watched at least 5 movies.

*  Pinterest: open source public dataset of the social network and image
platform Pinterest. We only keep users who have at least 20 interactions

(pins) as in [11].

*  Melon: streaming history of 8 days from the largest music streaming plat-
form in Korea. The play count is binarized like all the other datasets. We
kept users who have listened to at least 100 songs and songs that have

been played by at least 3000 users.

Pinterest ML-20M Netflix Melon
# of users 55,169 136,677 463,435 1,111,652
# of items 9,916 20,108 17,769 17,809
# of interactions 1.5M 10.0M 56.9M 194.4M
% of interactions 0.27% 0.36% 0.69% 0.98%
# of held-out users 5,000 10,000 40,000 100,000

Table 4-1. Summary of datasets after preprocessing

4.3 Configurations

Hyperparameters of the model were tuned through grid search of candidate values.
Model selection was done by evaluating the NDCG@100 on the validation set.
In the case of VAE based models: Multi-VAE, Multi-VAE (Gated), Vamp,
H+Vamp and H+Vamp (Gated), the models were trained and tuned following the
exact same protocol. Note that the Multi-VAE is our strongest baseline and has
also been compared rigorously with our proposed models. The Beta parameter,
controlling the effectiveness of the prior, was selected between {0.1,0.2, ..., 1.0}.
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The width of hidden layers {300, 600}, and size of the bottleneck Z; and Z,
(only Z; in the case of original VAE) {100, 200} were chosen for the best per-
formance in each separate model. In the case of models using VampPrior, the
number of components K was set to 1000. Warm-up epochs were applied on the
parameter beta and early stopping was done if the model’s NDCG@100 did not
improve on the validation set for over 50 epochs after warm-up. The ADAM op-

timizer was used for stochastic gradient descent with 200 batch size.

4.4 Results

In this section we report the experimental results comparing baseline models to
our proposed model along with the intermediate models studying the effect of
flexible priors, hierarchical stochastic units and gating mechanisms. In the case of
MovieLens and Netflix dataset, the results of WMF, SLIM and CDAE are taken
from [19]. Note that our experimental settings and data preprocessing are con-
sistent with [19] for fair comparison. We also present results of additional analysis

further studying the effect of using gates.

4.4.1 Model Performance

Here we present a summary of experimental results of the model performance for
the four different real-world datasets: MovieLens 20M, Netflix, Pinterest and
Melon. Our proposed model along with intermediate models are compared to
state-of-the-art baselines for collaborative filtering. Performance is measured for
truncated normalized discounted cumulative gain and recall on different K’s and

the result for the best performing model on each metric in marked in bold.
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MovieLens 20M

Quantitative results on the MovieLens 20M dataset are presented in Table 4-2.
The standard errors of the statistics are around 0.002. Multi-VAE was the strong-
est baseline as expected, it showed equivalent performance to the results reported
in the original paper [19]. Vamp shows significant improvement compared to
Multi-VAE indicating the benefit of changing the restrictive standard normal prior
to a flexible VampPrior. Our final model H+Vamp (Gated) shows the best perfor-
mance and significantly outperforms the strongest baseline Multi-V AE on all met-
rics. The final model shows up to 6.52% relative increase in NCDG@20 produc-

ing new state-of-the-art results.

MovieLens 20M

Models NDCG@100 NDCG@20  Recall@50 Recall@20 Recall@10
WMEF [15]1 0.386 - 0.498 0.360 -
SLIM [23]F 0.401 - 0.495 0.370 -
CDAE [38] 0.418 - 0.523 0.391 -
Mult-VAE [19] 0.42700 0.33804 0.53524 0.39569 0.33285
Vamp 0.43433 0.34892 0.53933 0.40310 0.34413
H+Vamp 0.43684 0.35284 0.53974 0.40524 0.34911
Mult-VAE (Gated) 0.43515 0.34741 0.54498 0.40558 0.34457
H+Vamp (Gated) 0.44522 0.36008 0.55109 0.41308 0.35442

Table 4-2. Results for MovieLens 20M dataset. Standard errors are around

0.002. "Results are taken from [19], note that our datasets, metrics and experimental settings are
consistent with [19].

Netflix
Quantitative results for the Netflix dataset are presented in Table 4-3. Standard
errors are around 0.001. Similar to the MovieLens dataset, Multi-VAE is the

strongest baseline while Vamp, H+Vamp, H+Vamp(Gated) shows sequentially
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improving performance. Our final model shows the best performance and shows

up to 9.58% relative increase in Recall@10 compared to the strongest baseline.

Netflix
Models NDCG@100 NDCG@20  Recall@50 Recall@20 Recall@10
WMEF [15]1 0.351 - 0.404 0.316 -
SLIM [23]F 0.379 - 0.428 0.347 -
CDAE [38] 0.376 - 0.428 0.343 -
Mult-VAE [19] 0.38711 0.32256 0.44429 0.35248 0.32650
Vamp 0.39589 0.33843 0.44907 0.36327 0.34275
H+Vamp 0.40242 0.34630 0.45605 0.37090 0.35129
Mult-VAE (Gated) 0.39241 0.32927 0.44958 0.35953 0.33377
H+Vamp (Gated) 0.40861 0.35251 0.46252 0.37678 0.35779

Table 4-3. Results for the Netflix dataset. Standard errors are around 0.001. Re-
sults are taken from [19], note that our datasets, metrics and experimental settings are consistent
with [19].

Pinterest

Quantitative results on the Pinterest dataset are presented in Table 4-4. Standard
errors are around 0.002. Since WMF, SLIM and CDAE have not been evaluated
on the Pinterest dataset in [19], we only compare our models with the strongest
baseline Multi-VAE. In case of the Pinterest dataset, our final model H+Vamp
(Gated) does show increased performance but the results are not as significant as
the other datasets. Especially, the gating mechanism does not show significant
improvements if we compare Multi-VAE vs Multi-VAE (Gated) or H+Vamp vs
H+Vamp (Gated). Our final model shows a maximum of 3.03% relative increase
compared to the baseline. However, the difference for many of the metrics are
within two standard errors and therefore it is uncertain to say that there is signifi-

cant improvement.
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Pinterest

Models NDCG@100 NDCG@20  Recall@50 Recall@20 Recall@l0
Mult-VAE [19] 0.18888 0.11179 0.28485 0.15956 0.10043
Vamp 0.18983 0.11328 0.28648 0.16352 0.09942
H+Vamp 0.19026 0.11284 0.28937 0.16287 0.10082
Mult-VAE (Gated) 0.18810 0.11116 0.28683 0.16064 0.09988
H+Vamp (Gated) 0.19189 0.11416 0.28995 0.16440 0.10134

Table 4-4. Results for the Pinterest dataset. Standard errors are around 0.002.

Melon

Quantitative results for the Melon streaming dataset are shown in Table 4-5. The

Standard errors are around 0.001. Like the Pinterest dataset, we only compare be-

tween the Variational Autoencoder based models. The results show significant

improvements similar to the MovieLens and Netflix dataset. Vamp, H+Vamp ,

H+Vamp (Gated) shows sequentially increasing performance beating the baseline

Multi-VAE. Results show very significant increases in performance, with the final

model showing up to 13.08% relative increase in NDCG@20 compared to the

baseline.
Melon
Models NDCG@100 NDCG@20  Recall@50 Recall@20 Recall@l0
Mult-VAE [19] 0.44325 0.40473 0.38324 0.37033 0.43536
Vamp 0.46478 0.43845 0.39845 0.39566 0.47213
H+Vamp 0.47483 0.44853 0.40731 0.40510 0.48364
Mult-VAE (Gated) 0.45378 0.41813 0.39135 0.38115 0.44966
H+Vamp (Gated) 0.48486 0.45770 0.41690 0.41389 0.49224

Table 4-5. Results for the Melon dataset. Standard errors are around 0.001.
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4.4.2 Further Analysis on the Effect of Gating

We also conducted experiments to further study the effect of using gates. We pre-
sent the results in ndeg@100 for the Netflix dataset in Table 4-6. In this experi-
ment the number of hidden units in each layer is fixed to 600'. A two layer model
means that there are two hidden layers in each of the encoder and decoder.

We can see in Table 4-6 that for models with no gates, increasing the depth
does not bring performance gain while for gated models it does. This can be in-
terpreted that gating does help the network to propagate information through
deeper models. However, we can also see large performance gains in simply add-
ing the gates without additional layers. This tells us that the higher-level interac-
tions the self-attentive gates allow are also very helpful themselves for modeling
user preferences. One may point out that the gated model has more parameters,
but note that ungated models cannot achieve similar performance by merely add-

ing more units.

Netflix (NDCG@100) No-Gate Gated

Mult-VAE (1 Layer) 0.38711 0.39229
Mult-VAE (2 Layer) 0.38359 0.39241
Vamp (1 Layer) 0.39589 0.40169
Vamp (2 Layer) 0.39346 0.40277
H + Vamp (1 Layer) 0.40242 0.40728
H + Vamp (2 Layer) 0.37970 0.40861

Table 4-6. Comparison of performance between Gated and Un-Gated for models
of different depth?. The model with better performance (1 Layer vs 2 Layers) is
marked in bold.

! All other hyperparameters except the number of layers were fixed as well.
2 There was no additional performance gain for adding more hidden layers than two.
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S CONCLUSION

In this work, we extend the VAE for collaborative filtering to adopt flexible priors
and gating mechanisms. We show empirically that standard gaussian priors may
limit the model capacity and introducing a more flexible prior can learn better
representations of the user preference. For three datasets: MovieLens 20M, Net-
flix and Melon, qualitative results show that accompanying flexible priors, hier-
archical stochastic units and gating mechanisms bring sequentially improving per-
formance. Our proposed methods show significant performance gains on large

real-world collaborative filtering datasets.

Our final model incorporating Hierarchical VampPrior VAEs with GLUs
produces new state-of-the-art results in the collaborative filtering literature. The
H+Vamp (Gated) model beats the original state-of-the-art baseline on all datasets
with up to 13.08% relative increase on the Melon dataset. While the model showed
the least amount of performance gain on the Pinterst dataset, the model is still at

least on par and marginally better than the original VAE.

We also show that gating mechanisms are suitable for the sparse user-item
interaction data. Gates provide valuable modeling capacity as well as helping in-

formation propagate through deeper networks. The Gated linear units allow for
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higher level interactions; for example, it can extract different values of features
for the same item depending on which other items the user has consumed it with.
This may be an important feature in learning from certain user-item preference
datasets as there may be many different intentions to a consumption of the same

item.

Overall, this work is the first to address the restrictive prior problem in the
VAE-CF framework as well as introducing the potential of gating mechanisms in
non-recurrent recommender systems. The results encourage the need for exploring
more efficient architectures for variational autoencoders and neural networks in

recommender systems.
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