

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학석사 학위논문

Enhancing VAEs for Collaborative Filtering:

Flexible Priors & Gating Mechanisms

복잡 사전분포 및 Gating 구조를 이용한 VAE 기반

협업필터링 성능 항샹

2019년 8월

서울대학교 융합과학기술대학원

융합과학부 디지털정보융합전공

김 대 룡

i

Abstract

Since Matrix Factorization based linear models have been dominant in the Col-

laborative Filtering context for a long time in the past, Neural Network based CF

Models for recommendation have started to gain attention recently. One branch of

research is based on using deep generative models to model user preferences and

Variational Autoencoders where shown to give state-of-the-art results.

However, there are some potentially problematic characteristics of the current

Variational Autoencoder for CF. The first is the too simplistic prior VAEs incor-

porate for learning the latent representations of user preference, which may be

restricting the model from learning more expressive and richer latent variables

that could boost recommendation performance. The other is the model’s inability

to learn deeper representations with more than one hidden layer.

Our goal is to incorporate appropriate techniques in order to mitigate the

aforementioned problems of Variational Autoencoder CF and further improve the

recommendation performance of VAE based Collaborative Filtering. We bring the

VampPrior, which successfully made improvements for image generation to tackle

the restrictive prior problem. We also adopt Gated Linear Units (GLUs) which

were used in stacked convolutions for language modeling to control information

flow in the “easily deepening” autoencoder framework.

We show that such simple priors (in original VAEs) may be too restrictive to

fully model user preferences and setting a more flexible prior gives significant

ii

gains. We also show that VAMP priors coupled with gating mechanisms outper-

form SOTA results including the Variational Autoencoder for Collaborative Fil-

tering by meaningful margins on 4 benchmark datasets (MovieLens, Netflix, Pin-

terest, Melon).

Keywords: Recommender Systems, Deep Learning, Neural Collaborative Filter-

ing, Deep Generative Models, Variational Auto-Encoders, Machine Learning, In-

formation Systems

Student number: 2017-29907

iii

Contents

Abstract i

Contents iii

List of Figures vi

List of Tables vii

1 INTRODUCTION 1

 1.1 Background and Motivation 1

 1.2 Research Goal 3

 1.3 Enhancing VAEs for Collaborative Filtering 3

 1.4 Experiments 5

 1.5 Contributions 5

2 RELATED WORK 7

 2.1 Collaborative Filtering 7

 2.1.1 Traditional methods & Matrix-Factorization based CF 8

iv

 2.1.2 Autoencoders for CF 12

 2.2 Deep Generative Models (VAE) 17

 2.2.1 Variational Bayes 18

 2.2.2 Variational Autoencoder 18

 2.3 Variational Autoencoder for Collaborative Filtering 20

 2.3.1 VAE for CF 21

 2.4 Recent research in Computer Vision & Deep Learning 24

 2.4.1 VampPrior 24

 2.4.2 Gated CNN 25

3 METHOD 28

 3.1 Flexible Prior 29

 3.1.1 Motivation 29

 3.1.2 VampPrior 30

 3.1.3 Hierarchical Stochastic Units 31

 3.2 Gating Mechanism 32

 3.2.1 Motivation 32

 3.2.2 Gated Linear Units 34

4 EXPERIMENT 35

 4.1 Setup 35

 4.1.1 Baseline Models 35

 4.1.2 Proposed Models 37

 4.1.3 Strong Generalization 37

 4.1.4 Evaluation Metrics 38

 4.2 Datasets 38

 4.3 Configurations 39

 4.4 Results 40

 4.4.1 Model Performance 40

v

 4.4.5 Further Analysis on the Effect of Gating 44

5 CONCLUSION 45

Bibliography 47

국문초록 51

vi

List of Figures

 2-1 Types of Collaborative Filtering in Recommender Systems 9

 2-2 Visualization of Matrix-Factorization CF 11

 2-3 Neural Collaborative Filtering Framework 13

 2-4 Session-Based Recommendations with RNNs 14

 2-5 Collaborative Filtering with Autoencoders 15

 2-6 Style-Transfer with Deep Generative Models 18

 2-7 Taxonomy of Autoencoders used for CF 23

 3-1 Diagram comparing the original and hierarchical stochastic layers 31

 3-2 Visualization of a 2-layer Autoencoder 33

vii

List of Tables

 4-1 Summary of datasets after preprocessing 39

 4-2 Results for MovieLens 20M dataset. Standard errors are around
0.002.

41

 4-3 Results for the Netflix dataset. Standard errors are around 0.001. 42

 4-4 Results for the Pinterest dataset. Standard errors are around 0.002. 43

 4-5 Results for the Melon dataset. Standard errors are around 0.001. 43

 4-6 Comparison of performance between Gated and Un-Gated for mod-
els of different depth. The model with better performance (1 Layer
vs 2 Layers) is marked in bold.

44

- 1 -

1 INTRODUCTION

1.1 Background and Motivation

Deep Learning is the hot topic in almost every research field in todays’ era and

recommender systems are not an exception. Since the Netflix Prize in 2006, rec-

ommender systems have gained much attention in both academia and industry

with Matrix-Factorization based collaborative filtering algorithms [15, 23, 26] be-

ing the long-standing king in the field of recommender systems. Matrix-Factori-

zation methods have been popular for collaborative filtering because of its’ im-

pressive performance despite its’ simple and intuitive idea of learning latent vari-

ables through matrix decomposition.

 However, Matrix-Factorization methods are restricted to linear models and

like other fields of machine learning there has been effort to apply neural networks

and deep learning to recommender systems. Neural networks were used to con-

duct non-linear matrix factorization or learn rich non-linear latent variables of user

preference. The results showed superior results compared to traditional matrix

factorization techniques and recently Neural Network based collaborative filtering

models have started to gain attention.

- 2 -

Deep Learning based Recommender Systems

There have been different kinds of recent studies incorporating deep learning into

recommender systems. There are researches using deep learning for collaborative

filtering. Extending the traditional matrix factorization framework to non-linear

matrix factorization using neural networks [11], session-based recommendation

using recurrent neural networks (RNNs) [12, 24, 37], recommendation with auto-

encoders and generative models [19, 28, 36, 38], and many others including hy-

brid methods using extraction of high-level content features through deep learning

[32, 35].

 In this work we focus on the branch of research using autoencoders and gen-

erative models which model latent variables of user preference. Recommendation

can be done by using the latent variables of a given user to reconstruct the users’

history for recommendation. There has been work using vanilla autoencoders [28],

denoising autoencoders [38], and most recently variational autoencoders (VAEs)

[19] to model user preference for collaborative filtering. To the best of our

knowledge, Variational Autoencoders for collaborative filtering currently gives

state-of-the-art results in the context of collaborative filtering.

Variational Autoencoders and Collaborative Filtering

Variational Autoencoders have been at the core of attention in Artificial Intelli-

gence (AI) research in the last year. Especially in the domain of computer vision

and signal processing, deep generative models such has VAEs were used in the

task of image and audio generation. Also, a few shortcomings of the original

VAEs were suggested and many interesting new researches were proposed tailor-

ing VAEs for better performance in image generation.

- 3 -

However, Variational Autoencoders for Collaborative Filtering is in its’ sim-

plest form and there is definitely room left for further improvement. While many

new variations of VAEs are being proposed in the domain of image and audio

generation, there has not yet been much research that has yielded further success

in the Collaborative Filtering task for recommender systems.

1.2 Research Goal

In this work we aim to overcome the problems of Variational Autoencoders in the

task of Collaborative Filtering and appropriately tailor VAEs in order to further

improve model performance and make high quality recommendations. While

many new progresses have been made on VAEs in different domains, not all of

them are suitable for the task of recommendation while some of them are. Our

work incorporates ideas from different domains such as computer vision and nat-

ural language processing (NLP) to help Variational Autoencoders to better model

user preferences for recommendation.

1.3 Enhancing VAEs for Collaborative Filtering

Two main motivations led our research. 1) The current prior distribution used in

VAEs may be too restrictive for the Collaborative Filtering task, hindering the

models from learning richer latent variables of user preference which is crucial to

model performance. 2) Learning from user-item interaction history is different

from learning from pixels (images) and may have its’ own more effective archi-

tectures to model the characteristic of such data.

- 4 -

Flexible Priors

Original VAEs, including the research of VAEs for Collaborative filtering, use a

unimodal multivariate standard Gaussian distribution for the prior distribution of

the latent variables. The encoder, is trained to encode each data point to a posterior

distribution matching the prior distribution of the latent variable. The main idea

behind using such a simple prior distribution is that a flexible neural network is

used as an encoder, expecting that whatever prior distribution we choose the en-

coder network will learn a posterior distribution matching the prior. However, this

is a very idealistic assumption that the Encoder (and Decoder) will capture all the

complex dependencies and factor the latent variables to a very simple distribution.

There has been research in domains of image generation that this is not the case

in real world applications, which lead to the question: could this also be hurting

the expressiveness of latent variables learned by VAEs in Collaborative Filtering?

We implement Hierarchical Variational Autoencoders with VampPrior (Var-

iational Mixture of Posteriors Prior) to learn richer latent representations of user

preferences from interaction history. VampPrior is a very recent idea found effec-

tive in image generation relaxing the original restrictive prior to a more flexible

prior which is an approximation to the optimal prior w.r.t the Evidence Lower

Bound (ELBO).

Gating Mechanisms

Another variation we adopted different from the original research of VAEs for CF

is that we used Gated Linear Units (GLUs) to successfully increase the depth of

our model. Gated Linear Units are similar to Gated Recurrent Units (GRUs) in

Recurrent Neural Networks. While GRUs control the information flow during the

- 5 -

recurrent process of RNNs, Gated Linear Units control the information flow of

the information upstream starting from the data at the bottom of the network to

the output.

The Gating Mechanism enables to effectively control information flow of

deep networks by learning when each item or feature contribute to certain units.

Coupling the Gating Mechanism with the aforementioned VampPrior signifi-

cantly boosted the performance of the Variational Autoencoding CF framework

and outperformed current state-of-the-art Collaborative Filtering algorithms.

1.4 Experiment

Experiments were carried out on three popular public benchmark datasets and one

private dataset of different domains and size: MovieLens 20M, Netflix, Pinterest

and Melon. Our proposed method was compared to baseline models including

state-of-the-art Matrix Factorization and Autoencoder based methods. Evaluation

was done under the strong generalization setting where users were split into

train/validation/test sets so that all click history information of a held-out user (for

evaluation) was totally blocked at the training step.

1.5 Contributions

The key contributions of our work are as follows:

• Our work is the first to address the restrictive prior problem for the VAE-

CF framework and shows that relaxing the prior to a more flexible distri-

bution yields better recommendation performance.

• We show introducing gating mechanisms are also very helpful for

- 6 -

autoencoder based CF in learning deeper and more sophisticated repre-

sentations of interaction history.

• Our proposed model using hierarchical VAEs with VampPrior and Gated

Linear Units gives new State-Of-The-Art results on standard benchmark

datasets in the task of collaborative filtering.

- 7 -

2 RELATED WORK

Prior studies which were essential to our research are arranged in four main

themes: Collaborative Filtering, Deep Generative Models (VAE), Variational Au-

toencoders for Collaborative Filtering, Recent research in Computer Vision &

Deep Learning.

2.1 Collaborative Filtering

Today, the immense size and diversity of Web-based services make it nearly im-

possible for individual users to effectively search and find online content without

the help of recommender systems. Recommender systems is a domain in machine

learning which has the goal of understanding and modeling the factors of user

preference and predicting future behavior. Due to its direct practical use in e-com-

merce and close relatedness to human behavior, recommender systems are an im-

portant topic receiving much attention from both academia and the industry.

 Collaborative Filtering (CF) is a popular technique used in recommender sys-

tems and designates a whole class of machine learning algorithms that uses col-

laborative information of users, items, etc. for recommendation. Collaborative

- 8 -

Filtering algorithms usually consume a very large history of user-item interaction

to make personalized recommendations. The key idea of Collaborative Filtering

is that people often get the best recommendations from someone with tastes sim-

ilar to themselves. Collaborative Filtering uses the user-item interaction history to

leverage information about the user preferences and make recommendations

based on users with similar interest.

The boom of Collaborative Filtering algorithms was steered by the Netflix

Prize. The Netflix Prize in 2009 was an open competition to develop to best col-

laborative filtering algorithm to predict user ratings for films, using the previous

user-item consumption history. The competition was held by Netflix with a grand

prize of $1,000,000 and triggered an explosive attention to the field of recom-

mender systems. The winning solution of the Netflix Prize was an ensemble of

predictors based on neighborhood models, Matrix-Factorization models and Re-

stricted Boltzmann Machines (RBM).

 In this section, we first review traditional neighborhood models and Matrix-

Factorization based CF methods that has been the most popular in the field of

recommender systems for a long time. Then we get to a more recent approach

incorporating neural networks which is very closely related to our research: an

Autoencoding framework to perform Collaborative Filtering. The Autoencoder

also has a connection to the Restricted Boltzmann Machine (RBM) in the sense

that they are an unsupervised latent variable model.

2.1.1 Traditional methods & Matrix-Factorization based CF

Traditionally Collaborative Filtering methods could be divided into neighbor-

hood-based methods and model-based methods. Nowadays CF algorithms are

- 9 -

mostly model-based, including the Matrix-Factorization based methods and Neu-

ral Network based methods.

Neighborhood-based methods

Before the Matrix-Factorization based CF gained popularity, a common Collabo-

rative Filtering method was the neighborhood-based approach and had the form

of user-based CF and item-based CF. User-based CF for example is made up of

the following two steps:

1. Calculate users who have similar consumption patterns as the given user

2. Use the ratings from the similar users of step 1 to calculate the predicted

ratings of items for given user

Item-based collaborative filtering follows similar steps in an item-centric manner.

These methods were called Neighborhood-Based approaches as it finds explicit

neighbors to calculate predicted ratings from. The subsequent Matrix-Factoriza-

tion Collaborative Filtering can be categorized as a Model-based approach.

Figure 2-1. Types of Collaborative Filtering in Recommender Systems

- 10 -

Matrix Factorization CF

While neighborhood-based approaches took a user-centric or an item-centric

viewpoint to make recommendations, Matrix-Factorization methods learn user la-

tent factors and item latent factors simultaneously. The initial idea was formed by

applying low-rank matrix decomposition techniques on the user-item history ma-

trix such as Singular Value Decomposition (SVD) and Principle Component

Analysis (PCA).

A simple form of Matrix-Factorization Collaborative Filtering is as follows.

For every user item pair 𝑢𝑢, 𝑖𝑖 the user’s rating for the item can be predicted as

below.

�̂�𝑟𝑢𝑢𝑢𝑢 = 𝑥𝑥𝑢𝑢𝑇𝑇𝑦𝑦𝑢𝑢

𝑥𝑥𝑢𝑢 ∈ 𝑅𝑅𝑑𝑑 is the latent vector of user 𝑢𝑢 and 𝑦𝑦𝑢𝑢 ∈ 𝑅𝑅𝑑𝑑 is the latent vector of item

𝑖𝑖. The dimension of the latent vectors 𝑑𝑑 is usually much smaller than the size of

users or items (𝑑𝑑 ≪ 𝑁𝑁,𝑀𝑀). The latent vectors 𝑋𝑋 ∈ 𝑅𝑅𝑁𝑁×𝑑𝑑 and 𝑌𝑌 ∈ 𝑅𝑅𝑀𝑀×𝑑𝑑 can be

learnt through optimizing the following objective function for all 𝑢𝑢, 𝑖𝑖 pairs that

have a given rating (or all pairs with unobserved ratings as 0):

min
x∗, 𝑦𝑦∗

� (𝑟𝑟𝑢𝑢𝑢𝑢 − 𝑥𝑥𝑢𝑢𝑇𝑇𝑦𝑦𝑢𝑢)2 + 𝜆𝜆(‖𝑥𝑥𝑢𝑢‖2 + ‖𝑦𝑦𝑢𝑢‖2)
𝑟𝑟𝑢𝑢𝑢𝑢 𝑢𝑢𝑖𝑖 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

𝜆𝜆 is a regularizing parameter to control for the norm of 𝑥𝑥𝑢𝑢 and 𝑦𝑦𝑢𝑢. A diagram

visualizing the Matrix-Factorization algorithm can be seen in figure 2-2.

- 11 -

Figure 2-2. Visualization of Matrix-Factorization CF

 Recently, researches focus more on implicit feedback of users such as click

or purchase rather than explicit ratings. The reason is that many users using Web-

based services do not bother to give explicit ratings to the items they consumed

and therefore explicit feedback is hardly available. A popular realization of Ma-

trix-Factorization CF on implicit feedback is the Weighted Matrix-Factorization

(WMF) algorithm [15].

 First, it models binary variables 𝑝𝑝𝑢𝑢𝑢𝑢 indicating implicit preference of user 𝑢𝑢

to item 𝑖𝑖. The 𝑝𝑝𝑢𝑢𝑢𝑢 values can be derived by binarizing the 𝑟𝑟𝑢𝑢𝑢𝑢 values in the ex-

plicit case:

𝑝𝑝𝑢𝑢𝑢𝑢 = � 1 𝑟𝑟𝑢𝑢𝑢𝑢 > 0
 0 𝑟𝑟𝑢𝑢𝑢𝑢 = 0

And the model can be computed by minimizing the corresponding objective func-

tion:

min
x∗, 𝑦𝑦∗

�𝑐𝑐𝑢𝑢𝑢𝑢(𝑝𝑝𝑢𝑢𝑢𝑢 − 𝑥𝑥𝑢𝑢𝑇𝑇𝑦𝑦𝑢𝑢)2 + λ(�‖𝑥𝑥𝑢𝑢‖2
𝑢𝑢

 +�‖𝑦𝑦𝑢𝑢‖2
𝑢𝑢

)
𝑢𝑢,𝑢𝑢

𝑐𝑐𝑢𝑢𝑢𝑢 is a confidence level or weight chosen by the researcher reflecting the amount

of preference or importance of the user-item pair. 𝑐𝑐𝑢𝑢𝑢𝑢 may set to incorporate the

- 12 -

value of 𝑟𝑟𝑢𝑢𝑢𝑢 or simply the existence of interaction if only implicit data is availa-

ble.

 The Matrix-Factorization model can be optimized in various ways: applying

matrix decomposition (SVD, PCA, …) directly on the preference matrix, Stochas-

tic Gradient Descent (SGD), Alternating Least Squares (ALS) and more. Also, the

MF model can be further extended by adding additional terms in the model for-

mula. User and item intercepts, temporal dynamics, content and contextual fea-

tures are popular choices. There are also probabilistic versions of MF so called

Probabilistic Matrix Factorization (PMF) by using probabilistic graphical models

to solve the Matrix-Factorization problem.

 Matrix-Factorization methods for Collaborative Filtering have been thor-

oughly researched and used in many industrial applications. It has impressive per-

formance despite its simplicity and also scales to large size datasets making it

favorable to industrial applications. However, one important drawback is that MF

methods are restricted to linear models. This led to the research of using neural

networks, a non-linear universal function approximator, in the field of recom-

mender systems.

2.1.2 Autoencoders for Collaborative Filtering

Even though Matrix-Factorization based methods of CF had many advantages,

there were needs of more sophisticated non-linear modeling in CF. The heroic

breakthroughs Neural Networks (NN) has made in other domains such as object

recognition in ImageNet has led attempts to apply Neural Networks to Collabora-

tive Filtering. NN based CF methods conduct non-linear transformation tech-

niques to model user-item preferences. The ability of Neural Networks to conduct

- 13 -

non-linear transformations was shown to improve the performance of recom-

mender systems compared to the traditional linear models.

Neural Network based CF

 Several branches of research using Neural Networks for Collaborative filter-

ing are being actively studied. The most typical is Non-Linear Matrix Factoriza-

tion, it uses the Neural Network architecture to learn non-linear latent factors of

users and items. The latent factors go through several layers of a Multilayer Per-

ceptron (MLP) to predict the user-item rating. This is different from the original

linear Matrix-Factorization in the sense that it can learn any non-linear function

of the two latent factors instead of just the dot product. Figure 2-3 shows a diagram

of Neural Collaborative Filtering [11] conducting non-linear matrix factorization.

Figure 2-3. Neural Collaborative Filtering Framework [11]

 Another line of studies uses Recurrent Neural Networks (RNNs) to make Ses-

sion-based recommendations. RNNs take in the sequence of item IDs in a given

session and predict the next item likely to be consumed. The user ID need not to

be tracked and the sequence of item IDs in the session recurrently updates the

- 14 -

hidden state of the model. The model predicts the next item based on the current

hidden state. A popular work is the Session-Based Recommendations with Recur-

rent Neural Networks [12] shown in figure 2-4, advances of the research continued

after on [24, 37].

Figure 2-4. Session-Based Recommendations with RNNs [24]

 Algorithms using Autoencoders and Generative models also take a position

in the lines of research in NN based recommendation. This line of research is di-

rectly connected to this current work and will be discussed in more detail as we

go on.

 There are more various kinds of studies incorporating Neural Networks for

recommendations. A popular method is using NNs for extracting deep content

features from the items [32, 35]. There are also Autoregressive methods [41],

Deep Reinforcement Learning based methods [40], and much more. In this work

we focus on the works using autoencoders and generative models for recommen-

dation.

- 15 -

Autoencoder based Recommendation

The Autoencoder based recommendation algorithm was first proposed as Auto-

Rec [28] by Sedhain et al. Autoencoders are similar to RBMs in the fact that they

are unsupervised latent variable models and they can become the same under cer-

tain objectives [34]. RBMs explicitly model the joint distribution of the hidden

and visible variables. Autoencoders are much more intuitional, consisting of the

input, encoder, latent code, decoder, and reconstruction.

 Autoencoders take in whatever input and encodes it into a latent code, typi-

cally in a lower dimension. The decoder then decodes the latent code to recon-

struct the original input. The difference between the original input and recon-

structed input, namely the reconstruction error, is used as the objective function

to train autoencoders.

 See figure 2-5 for an example of using Autoencoders for collaborative filter-

ing [28].

Figure 2-5. Collaborative Filtering with Autoencoders [28]

- 16 -

 The input of the autoencoder in the case of collaborative filtering is the rating

history 𝑟𝑟(𝑢𝑢) of a specific user 𝑖𝑖. 𝑟𝑟(𝑢𝑢) is a vector of size 𝑁𝑁, the of the number of

items with the given users’ ratings for each item if rated (it can be binary in the

case of implicit feedback). The encoder learns a low-dimension mapping from the

input to a latent variable which can be interpreted as the users’ preference. The

decoder then tries to reconstruct the original ratings from the users’ preference. Its

prediction gives estimates for the missing (unobserved) ratings and they can be

used for recommendation.

A one-layer Autoencoders reconstruction of input 𝒓𝒓 ∈ 𝑅𝑅𝑁𝑁 can be written as

the following,

ℎ(𝒓𝒓; 𝜃𝜃) = 𝑓𝑓(𝑾𝑾 ∙ 𝑔𝑔(𝑽𝑽𝒓𝒓 + 𝝁𝝁) + 𝒃𝒃)

with activation functions 𝑓𝑓(∙), 𝑔𝑔(∙), parameters 𝜃𝜃 ∈ {𝑾𝑾,𝑽𝑽,𝝁𝝁,𝒃𝒃} with transfor-

mations 𝑾𝑾 ∈ 𝑅𝑅𝑁𝑁×𝑘𝑘, 𝑽𝑽 ∈ 𝑅𝑅𝑘𝑘×𝑁𝑁 and biases 𝝁𝝁 ∈ 𝑅𝑅𝑘𝑘, 𝒃𝒃 ∈ 𝑅𝑅𝑁𝑁. This is a 1-layer

AutroRec model with k-dimensional latent code. The Model can be trained fol-

lowing the optimization of the objective function:

min
𝜃𝜃
��𝐫𝐫(𝑢𝑢) − ℎ�𝐫𝐫(𝑢𝑢);𝜃𝜃��𝛰𝛰

2
+
𝜆𝜆
2

𝑘𝑘

𝑢𝑢=1

∙ (‖𝐖𝐖‖𝐹𝐹2 + ‖𝐕𝐕‖𝐹𝐹2)

with 𝜆𝜆 as the regularization parameter.

 The AutoRec approach [28], which is the algorithm of using vanilla autoen-

coders for collaborative filtering, was shown to give superior results compared to

linear MF methods and RBM methods.

 Further research was made using Denoising Autoencoders (DAEs) [38]. Ran-

dom noise was injected at the input layer of the autoencoder, and the model was

trained to reconstruct input 𝒓𝒓 ∈ 𝑅𝑅𝑁𝑁 from its (partially) corrupted version 𝒓𝒓� . The

- 17 -

noise was anticipated to force the hidden layer discover more robust features and

prevent it from simply learning the identity function. The noise injection tech-

nique had positive regularization effects and further improved the model perfor-

mance of autoencoder based CF.

2.2 Deep Generative Models (VAEs)

Deep Generative Models are in the spotlight of AI and Machine Learning research

today. It has eye-catching outputs bringing much interest to the potential of AI

research (see figure 2-6). Deep Generative Models have been successful in do-

mains such as image generation, voice synthesis, style-transfer and more.

 Deep Generative Models are generative models using the power of Deep

Learning. Generative models aim at learning the underlying true data distribution

from training data. If we can recover the data probability distribution 𝑃𝑃(𝑋𝑋) we

can do almost everything we want with data: conduct arbitrary inference through

conditionalization and marginalization (regression and classification are also in-

ference), generate new samples from the data distribution 𝑋𝑋𝑘𝑘𝑛𝑛𝑘𝑘~𝑃𝑃(𝑋𝑋).

Two most commonly used and efficient approaches are Variational Autoen-

coders (VAEs) and Generative Adversarial Networks (GANs). Variational Auto-

encoders explicitly model the data distribution by maximizing the lower bound of

the data log-likelihood and Generative Adversarial Networks implicitly learn the

data distribution through adversarial training.

In this section we will focus on Variational Autoencoders (VAEs) as it is the

base framework used in our research for recommendation. We review the idea of

general VAEs and how it is trained through Variational Inference.

- 18 -

Figure 2-6. Style-Transfer with Deep Generative Models [7]

2.2.1 Variational Bayes

Variational Bayes, or Variational Bayesian methods are a family of techniques for

approximating intractable integrals arising in Bayesian inference and machine

learning. In the setting where there are unobserved latent variables and observed

training data, Variational Bayes can be used to make analytical approximations to

the true intractable posterior probability of latent variables which in turn can be

used to derive a lower bound for the marginal likelihood of the observed data.

This lower bound, so called the Evidence Lower Bound (ELBO) can be used to

optimize the Variational Autoencoder (VAE). We will see the detailed implemen-

tation of the idea for the VAE framework in the following section 2.2.2.

2.2.2 Variational Autoencoders

A Variational Autoencoder (VAE) [16] is a generative model which attempts to

model the data distribution 𝑝𝑝(𝑋𝑋) with the assumption there exists a latent struc-

ture 𝑧𝑧 using neural networks.

- 19 -

The scenario consists of two steps: (1) a value 𝑧𝑧𝑢𝑢 from some prior distribu-

tion 𝑝𝑝𝜃𝜃∗(𝑧𝑧) is generated, (2) a data point 𝑥𝑥𝑢𝑢 is generated from the conditional

distribution 𝑝𝑝𝜃𝜃∗(𝑥𝑥|𝑧𝑧). The distributions are parameterized by 𝜃𝜃 with the true pa-

rameters 𝜃𝜃∗ and we would like to find them by maximizing the marginal likeli-

hood 𝑝𝑝𝜃𝜃(𝑥𝑥) = ∫𝑝𝑝𝜃𝜃(𝑥𝑥|𝑧𝑧)𝑝𝑝𝜃𝜃(𝑧𝑧)𝑑𝑑𝑧𝑧 w.r.t 𝜃𝜃. However, we would like to use the

expressive deep neural networks to model the generation process 𝑝𝑝𝜃𝜃(𝑥𝑥|𝑧𝑧) which

then makes the marginal likelihood 𝑝𝑝𝜃𝜃(𝑥𝑥) and true posterior 𝑝𝑝𝜃𝜃(𝑧𝑧|𝑥𝑥) =

𝑝𝑝𝜃𝜃(𝑥𝑥|𝑧𝑧)𝑝𝑝𝜃𝜃(𝑧𝑧)
𝑝𝑝𝜃𝜃(𝑥𝑥) intractable.

 Variational Autoencoders solve the problem using the Variational Bayes ap-

proach. In order to do so, we set a generative model (decoder) 𝑝𝑝𝜃𝜃(𝑥𝑥|𝑧𝑧) which is

a neural network parameterized by 𝜃𝜃 , a prior distribution of latent variables

𝑝𝑝𝜆𝜆(𝑧𝑧), and an approximation to the unknown posterior 𝑝𝑝𝜃𝜃(𝑧𝑧|𝑥𝑥) with a recogni-

tion model (encoder) 𝑞𝑞𝜙𝜙(𝑧𝑧|𝑥𝑥) also with neural networks.

The Variational Lower Bound

We will be applying Stochastic Gradient Decent (SGD) methods for batches of

data and the marginal log-likelihood is composed of the sum of the marginal log-

likelihood log𝑝𝑝𝜃𝜃�𝑥𝑥(𝑢𝑢)� for each data point in the batch. Using the generative

model, recognition model and prior defined above, each marginal log-likelihood

can be rewritten as:

log𝑝𝑝𝜃𝜃(𝐱𝐱(𝑢𝑢)) = 𝐷𝐷𝐾𝐾𝐾𝐾�𝑞𝑞𝜙𝜙�𝐳𝐳�𝐱𝐱(𝑢𝑢)��𝑝𝑝𝜃𝜃�𝐳𝐳�𝐱𝐱(𝑢𝑢)�) + 𝓛𝓛(𝜽𝜽,𝝓𝝓; 𝐱𝐱(𝑢𝑢))

Since the Kullbak-Leibler divergence can take on only non-negative values, the

second term of the RHS becomes a lower bound of the marginal log-likelihood.

Which is the following:

- 20 -

𝓛𝓛�𝜽𝜽,𝝓𝝓; 𝐱𝐱(𝑢𝑢)� = −𝐷𝐷𝐾𝐾𝐾𝐾�𝑞𝑞𝜙𝜙�𝐳𝐳�𝐱𝐱(𝑢𝑢)��𝑝𝑝𝜃𝜃(𝐳𝐳)) + 𝔼𝔼𝑞𝑞𝜙𝜙(𝐳𝐳|𝐱𝐱(𝑢𝑢))[log𝑝𝑝𝜃𝜃(𝐱𝐱(𝑢𝑢)|𝐳𝐳)]

This is Variational Lower bound also called the Evidence Lower Bound (ELBO)

[16]. The objective is to optimize the lower bound w.r.t both the encoder parame-

ters 𝜙𝜙 and decoder parameters 𝜃𝜃 in order to indirectly optimize the marginal

log-likelihood.

Standard Normal Prior

The Variational Autoencoder chooses the prior distribution of 𝑧𝑧 as the standard

normal distribution considering that we used a flexible neural network for approx-

imating the posterior. This leads to an analytic solution to the KL-divergence part

of the ELBO resulting in a realization of the following:

log𝑞𝑞𝜙𝜙(𝐳𝐳|𝐱𝐱(𝑢𝑢)) = log𝒩𝒩�𝐳𝐳;𝝁𝝁(𝑢𝑢),𝝈𝝈2(𝑢𝑢)𝐈𝐈�

𝐿𝐿 is the number of samples used to approximate the negative reconstruction error

which can be set to 1 for a large enough batch size. The aggregated ELBO will be

optimized to train the model.

2.3 Variational Autoencoder for Collaborative Filtering

After the attempt of using vanilla Autoencoders [28] and Denoising Autoencoders

[38] for collaborative filtering, the Variational Autoencoder was adapted for col-

laborative filtering [19]. To the best of our knowledge, the Variational

- 21 -

Autoencoder for Collaborative Filtering currently shows the state-of-the-art

(SOTA) performance and is one of the most important researches to our proposed

work.

2.3.1 VAE for CF

Variational Autoencoders for CF uses the VAE framework in the task of Collab-

orative Filtering. It has a few adaptions such as introducing the beta parameter

controlling the impact of the prior and using the multinomial likelihood to calcu-

late the reconstruction error instead of the original binary cross-entropy.

 The model starts by sampling a K-dimensional latent representation 𝑧𝑧𝑢𝑢 for

each user 𝑢𝑢 from a standard normal prior distribution and is transformed by a

neural network generative model to produce the probability distribution over the

user’s item consumption history 𝑥𝑥𝑢𝑢, a bag-of-words vector indicating whether

the user has consumed each item, assuming a multinomial distribution:

𝐳𝐳𝑢𝑢 ~ 𝑁𝑁(0, 𝐈𝐈𝐾𝐾), 𝜋𝜋(𝐳𝐳𝑢𝑢) ∝ exp{𝑓𝑓𝜃𝜃(𝐳𝐳𝑢𝑢)}

𝐱𝐱𝑢𝑢 ~ 𝑀𝑀𝑢𝑢𝑀𝑀𝑀𝑀𝑖𝑖�𝑁𝑁𝑢𝑢,𝜋𝜋(𝐳𝐳𝑢𝑢)�

𝑓𝑓𝜃𝜃(∙) is a non-linear function parameterized by 𝜃𝜃 and 𝜋𝜋(𝑧𝑧𝑢𝑢) is the probability

vector over the entire item set. Then the same Evidence Lower Bound (ELBO)

can be derived as in section 2.2.2:

log𝑝𝑝(𝐱𝐱𝑢𝑢;𝜃𝜃) ≥ 𝔼𝔼𝑞𝑞𝜙𝜙�𝐳𝐳𝑢𝑢�𝐱𝐱𝑢𝑢�[log𝑝𝑝𝜃𝜃(𝐱𝐱𝑢𝑢|𝐳𝐳𝑢𝑢)] − KL �𝑞𝑞𝜙𝜙(𝐳𝐳𝑢𝑢|𝐱𝐱𝑢𝑢)||𝑝𝑝(𝐳𝐳𝑢𝑢)�

≡ 𝓛𝓛(𝐱𝐱𝑢𝑢;𝜽𝜽,𝝓𝝓)

𝑝𝑝𝜃𝜃(𝑥𝑥|𝑧𝑧) is the generative model and 𝑞𝑞𝜙𝜙(𝑧𝑧|𝑥𝑥) is the recognition model (varia-

tional posterior).

- 22 -

The model makes slight changes to ELBO by introducing the parameter 𝛽𝛽

to control for the impact of the KL-divergence term and takes it as the new objec-

tive function [19]:

𝓛𝓛𝛃𝛃(𝐱𝐱𝑢𝑢;𝜽𝜽,𝝓𝝓) ≡ 𝔼𝔼𝑞𝑞𝜙𝜙�𝐳𝐳𝑢𝑢�𝐱𝐱𝑢𝑢�[log𝑝𝑝𝜃𝜃(𝐱𝐱𝑢𝑢|𝐳𝐳𝑢𝑢)] − 𝛽𝛽 ∙ KL �𝑞𝑞𝜙𝜙(𝐳𝐳𝑢𝑢|𝐱𝐱𝑢𝑢)||𝑝𝑝(𝐳𝐳𝑢𝑢)�

If we look at the objective function, the first term of the RHS is the negative re-

construction error (this is the objective function of vanilla autoencoders) while the

second term is a regularizer forcing individual posteriors of data points to match

the prior of 𝑧𝑧. The new objective added the 𝛽𝛽 parameter too loosen the effect of

KL-divergence for better recommendations. The idea was that posterior and prior

need not to match as much in the task of collaborative filtering. We only need to

reconstruct the original user history to make predictions for unseen items, we do

not want to sample from a random 𝑧𝑧 to generate new samples from 𝑝𝑝𝜃𝜃(𝑥𝑥).

 Adequately tuning the parameter 𝛽𝛽 led to superior performances compared

to prior autoencoder based CF algorithms (obviously it beat linear MF methods as

well) and showed state-of-the-art performance for Collaborative Filtering. See fig-

ure 2-7 for a taxonomy of autoencoders used for CF.

 It can be interpreted that the VAE framework, learning a stochastic latent

representation of the user preference, acted as a regularizer and helped the model

to learn more useful representations.

- 23 -

Figure 2-7. Taxonomy of autoencoders used for CF [19]

Is this the best we can do?

However, in this original research of VAEs for CF the variational posterior (dis-

tribution of latent variables) of the data is pulled towards a very simple standard

normal distribution. To make things worse, the model is shallow with one hidden

layer (simply adding more layers does not improve performance). What this

means is that we should be suspicious of the ideal assumption that the encoder is

currently capturing all the complex dependencies and factoring the latent variables

to a very simple distribution. If this is not the case, the simple standard normal

prior may be restricting the model from learning richer latent representations

which is crucial to making recommendations with CF.

In our work we claim that we need a more effective structure to help the

model learn deeper representations and a more flexible prior that will not restrict

the model from learning richer latent representations.

- 24 -

2.4 Recent research in Computer Vision & Deep Learning

VAEs for CF currently shows the state-of-the-art results on Collaborative Filter-

ing, but as we pointed out at the end of the last section there are some questions

to be answered.

 To tackle the proposed problems, we incorporated techniques developed in

different domains such as computer vision and natural language processing. The

two main ideas we borrowed are from VAE with VampPrior [31] and Gated CNN

[4].

2.4.1 VampPrior

There have been a line of research concerning the simple prior of vanilla VAEs

[13, 20, 31]. A recent research [31] proposed the “Variational Mixture of Posteri-

ors” prior, or VampPrior for short, and showed successive results in the domain

of image generation. It showed that relaxing the original restrictive prior by setting

a more flexible prior improved performance.

The motivation of VampPrior starts from the Evidence Lower Bound (ELBO) we

saw previously in VAEs. The ELBO, originally interpreted as the negative recon-

struction error and KL-divergence term, can be further decomposed into three

terms:

𝓛𝓛(𝜃𝜃,𝜙𝜙, 𝜆𝜆) = 𝔼𝔼𝐱𝐱~𝑞𝑞(𝐱𝐱) �𝔼𝔼𝑞𝑞𝜙𝜙(𝐳𝐳|𝐱𝐱)[log𝑝𝑝𝜃𝜃(𝐱𝐱|𝐳𝐳)]�

 +𝔼𝔼𝐱𝐱~𝑞𝑞(𝐱𝐱) �ℍ�𝑞𝑞𝜙𝜙(𝐳𝐳|𝐱𝐱)��
 −𝔼𝔼𝐳𝐳~𝑞𝑞(𝐳𝐳)[− log 𝑝𝑝𝜆𝜆(𝐳𝐳)]

Maximizing ℒ(𝜙𝜙,𝜃𝜃, 𝜆𝜆) is our objective while the third term is made up of the

prior distribution 𝑝𝑝𝜆𝜆(𝑧𝑧) which is chosen in advance as the standard normal

- 25 -

distribution. However, one could find a prior that optimizes the ELBO w.r.t the

prior by solving the Lagrange function. Solving the problem simply gives the ag-

gregated posterior as the optimal prior:

𝑝𝑝𝜆𝜆∗(𝐳𝐳) =
1
𝑁𝑁
�𝑞𝑞𝜙𝜙(𝐳𝐳|𝐱𝐱𝑢𝑢)
𝑁𝑁

𝑢𝑢=1

However, using this choice as the prior will potentially lead to overfitting and

computational issues. Therefore, the VampPrior proposes an approximation of the

aggregated posterior by a mixture of variational posteriors with pseudo-inputs:

𝑝𝑝𝜆𝜆(𝐳𝐳) =
1
𝐾𝐾
�𝑞𝑞𝜙𝜙(𝐳𝐳|𝐮𝐮𝑘𝑘)
𝐾𝐾

𝑘𝑘=1

with 𝐾𝐾 ≪ 𝑁𝑁 as the number of pseudo-inputs and 𝑢𝑢𝑘𝑘 the 𝑁𝑁-dimensional (size

of item set) vector of the pseudo-input. The values of pseudo-inputs are learned

through backpropagation during training and can be viewed as hyperparameters

of the prior. If we look at the shape of the prior we can see that it is the form of a

mixture of gaussian distribution, resulting in a multimodal distribution.

 One interesting aspect is that the VampPrior is comprised of the variational

posterior (encoder). The work claims that the prior and encoder will “cooperate”

during training to yield helpful results.

2.4.2 Gated Convolutional Neural Network

The study of gated Convolutional Neural Network (CNN) was proposed as an

application of natural language processing [4]. It introduced the Gated Linear Unit

(GLU) and used it with stacked convolutions to produce superior results in lan-

guage modeling compared to previous models.

- 26 -

 Gating mechanisms in neural networks can control the path of how infor-

mation flows through the network and have been proven to be useful for Recurrent

Neural Networks (RNNs). Long Short-Term Memory networks (LSTMs) are a

popular choice of gated networks that control the information flow of each cell by

activating the input and forget gates. Gating mechanisms mitigate the problem of

vanishing gradients during the recurrent structure and selects how to aggregate the

sequential information passed on the network.

 As the structure of Neural Networks get deeper and deeper, non-recurrent

neural nets also have the problem of being unable to properly propagate infor-

mation from the bottom layer to the top. Following this idea, Gated CNNs applied

gates to the non-recurrent CNN architecture and introduced Gated Linear Units

(GLUs).

 Gated Linear Units consider only output gates, which allow the network to

control what information should be propagated through the hierarchy of layers. It

has a relatively simple form as shown below:

ℎ𝑙𝑙(𝐗𝐗) = (𝐗𝐗 ∗𝐖𝐖 + 𝐛𝐛) ⊗𝜎𝜎(𝐗𝐗 ∗ 𝐕𝐕 + 𝐜𝐜)

With 𝐗𝐗 the input of the layer and 𝐖𝐖,𝐕𝐕,𝐛𝐛, 𝐜𝐜 learned parameters, 𝜎𝜎 is the sig-

moid function. As we can see from the formula, how the gates react on the given

transformation of the input (𝐗𝐗 ∗𝐖𝐖 + 𝐛𝐛) is also different depending on the cur-

rent input. This can also be interpreted as potentially increasing the network’s

modeling capacity.

 Gated Linear Units can also be compared to Rectified Linear Units (ReLUs).

We can express the ReLU function as the following:

ReLU(𝐗𝐗) = 𝐗𝐗⊗ (𝐗𝐗 > 0)

- 27 -

Then the ReLU can be seen as a simplification of GLUs with a fixed deterministic

gate depending on the sign of the input.

The Gated Linear Units made a vast difference and provided useful modeling

capacity in the task of language modeling. Since many word-level NLP techniques

also work well with item recommendation techniques (such as the Word2Vec al-

gorithm which is also popular for learning item representations for recommend-

ers), there is potential that the Gating Mechanism will be helpful to recommender

systems.

- 28 -

3 Method

Many forms of neural network based Collaborative Filtering (CF) systems are be-

ing proposed and the Variational Autoencoder (VAE) framework for CF is show-

ing state-of-the-art (SOTA) performance [19]. However, we see some potentially

problematic characteristics of the current Variational Autoencoder CF framework.

The first is the too simplistic prior VAEs incorporate for learning the latent repre-

sentations of user preference, which may be restricting the model from learning

more expressive and richer latent variables that could boost recommendation per-

formance. The other is the model’s inability to learn deeper representations with

more than one hidden layer.

 Our goal is to incorporate appropriate techniques in order to mitigate the

aforementioned problems of Variational Autoencoder CF and further improve the

recommendation performance of VAE based Collaborative Filtering. We bring

the VampPrior, which successfully made improvements for image generation [31]

to tackle the restrictive prior problem. We also adopt Gated Linear Units (GLUs)

which were used in stacked convolutions for language modeling to control infor-

mation flow in the “easily deepening” autoencoder framework.

- 29 -

Thus, our proposed model can be summarized as an extention of the original

Variational Autoencoding CF with VampPrior and GLUs.

3.1 Flexible Prior

In this section we describe the methods we used including flexible priors in order

to learn richer latent representations of user preference.

3.1.1 Motivation

As we have seen in section 2.3.1 the Variational Autoencoder for CF attempts to

maximize the following objective function:

𝓛𝓛𝛃𝛃(𝐱𝐱𝑢𝑢;𝜽𝜽,𝝓𝝓) ≡ 𝔼𝔼𝑞𝑞𝜙𝜙�𝐳𝐳𝑢𝑢�𝐱𝐱𝑢𝑢�[log𝑝𝑝𝜃𝜃(𝐱𝐱𝑢𝑢|𝐳𝐳𝑢𝑢)] − 𝛽𝛽 ∙ KL �𝑞𝑞𝜙𝜙(𝐳𝐳𝑢𝑢|𝐱𝐱𝑢𝑢)||𝑝𝑝(𝐳𝐳𝑢𝑢)�

Which is a modified version of the Evidence Lower Bound (ELBO), a lower

bound on the marginal log-likelihood 𝑝𝑝(𝑋𝑋). If we look at the objective, the first

term can be interpreted as the negative reconstruction error while the second KL

term acts as regularizer pulling the variational posterior towards the prior 𝑝𝑝(𝑧𝑧).

This results in shaping the aggregated posterior close to the prior.

 Giving restrictions to the aggregated posterior (rather than letting it be scat-

tered everywhere) acts as a regularizer and helps the model learn more meaningful

latent representations. Which, in turn helps the recommendation performance.

 However, the prior 𝑝𝑝(𝑧𝑧) is chosen in advance as the multivariate standard

normal distribution. This distribution is unimodal with no covariance structure.

Which means the encoder is forced to learn a mapping of user preferences were

- 30 -

the latent representation matches a very simple unimodal distribution. A question

arises, “is this reasonable?”

 The original idea of using standard normal priors comes from an idealistic

assumption: the neural network will capture all the complex dependencies and

factor the latent variables to a very simple distribution. Neural Networks are in-

deed flexible and theoretically universal function approximators, but does the as-

sumption really hold for the current context of Collaborative Filtering?

 Modeling human preference is a very complicated task, looking at the metrics

such as recall@k of current CF algorithms gives the feeling that the models are

not yet near perfection. Furthermore, the current autoencoder based CF algorithms

(AE, DAE, VAE, …) fail to learn deep representations of more than 1 hidden

layer. Overall, it becomes plausible that the ideal assumption is currently not the

case and the too simplistic prior may be restricting the model from learning richer

representations. This calls for a need to replace the prior to a more flexible one.

3.1.2 VampPrior

The Variational Mixture of Posteriors prior (VampPrior) [31] is a recently pro-

posed type of prior which is derived by analyzing the variational Evidence Lower

Bound (ELBO). VampPrior consists of a mixture of gaussian distribution were

components are given by the encoder (variational posterior) conditioned on learn-

able pseudo-inputs. The VampPrior looks like the following:

𝑝𝑝𝜆𝜆(𝐳𝐳) =
1
𝐾𝐾
�𝑞𝑞𝜙𝜙(𝐳𝐳|𝐮𝐮𝑘𝑘)
𝐾𝐾

𝑘𝑘=1

- 31 -

𝑢𝑢𝑘𝑘 are trainable pseudo-inputs and 𝐾𝐾(≪ 𝑁𝑁) is the number of pseudo-inputs

which controls the level of flexibility. Since individual 𝑞𝑞𝜙𝜙(𝑧𝑧|𝑢𝑢𝑘𝑘) are gaussians,

the resulting distribution becomes a mixture of gaussians which is multimodal.

Our model is modified to use the VampPrior as the prior distribution. The

prior now indirectly learns from data the appropriate distribution by referring to

the encoder distribution and is also multimodal, making the prior much more flex-

ible compared to the original standard normal prior overall. The level of flexibility

is controlled by 𝐾𝐾 and calculation of the KL divergence (in the objective func-

tion) can be done through Monte-Carlo estimation.

3.1.3 Hierarchical Stochastic Units

In order to learn even richer latent representations, we also followed the approach

in VampPrior [31] to change the original latent variable 𝑧𝑧 to a stacked hierar-

chical structure of 𝑧𝑧1 and 𝑧𝑧2. There are now two layers of stochastic latent vari-

ables instead of one. A visual diagram of the new hierarchical structure is shown

is figure 3-1.

Figure 3-1. Diagram comparing the original and hierarchical stochastic layers
[31]

- 32 -

The variational part of the Hierarchical VAE is now:

𝑞𝑞𝜙𝜙(𝐳𝐳1|𝐱𝐱, 𝐳𝐳2) 𝑞𝑞𝜓𝜓(𝐳𝐳2|𝐱𝐱),

and the generative part as follows:

𝑝𝑝𝜃𝜃(𝐱𝐱|𝐳𝐳1, 𝐳𝐳2) 𝑝𝑝𝜆𝜆(𝐳𝐳1|𝐳𝐳2) 𝑝𝑝(𝐳𝐳2)

with 𝑝𝑝(𝑧𝑧2) given by a VampPrior, {𝜙𝜙,𝜓𝜓} the variational parameters and {𝜃𝜃, 𝜆𝜆}

the generative parameters.

3.2 Gating Mechanism

In this section we describe the gating mechanism adopted in our proposed model

to help learn deeper representations and increase model capacity.

3.2.1 Motivation

The autoencoding framework consists of the following: input, encoder, latent var-

iables, decoder, reconstructed input. Due to the presence of the encoder and the

decoder, as we increase the number of hidden layers the depth of the total network

increases much faster. Since in our case we use two layers of latent variables, a

VAE with 1 hidden layer actually ends up with a network of depth 2 ∗ (1) + 2 =

4 and a VAE with 2 hidden layers a depth of 2 ∗ (2) + 2 = 6. Eventually, an

autoencoder with only a few hidden layers end up as a relatively deep structure

(see figure 3-2 for a visualization of a 2-layer autoencoder).

- 33 -

Figure 3-2. Visualization of a 2-layer Autoencoder (the depth of an autoencoder
end up relatively deep)

The current problem is, the autoencoder based CF algorithms are having trouble

learning representations of more than 1 hidden layer. Preceding researches using

vanilla Autoencoders, Denoising Autoencoders, Variational Autoencoders did not

achieve significant performance gain by adding additional hidden layers. We an-

ticipate two reasons for this. (1) The nature of the data, extracting preference from

consumption history is a complex problem and the current NN structure may not

be effectively enforcing it. (2) The relatively easily deepening autoencoder struc-

ture, deep neural networks are hard to train because information may not properly

propagate through the whole network.

 Our model adopts Gated Linear Units to control for the information flow of

the deep network in order to help train deeper networks. The gating mechanism

can also be interpreted as increasing the capability of individual units to capture

more complex dependencies.

- 34 -

3.2.2 Gated Linear Units (GLUs)

Gating mechanisms are commonly used in Recurrent Neural Networks (RNNs) to

control the path of how information flows through the long recurrent process.

Gated Linear Units (GLUs) are a Gating Mechanism that can be used in Non-

Recurrent Networks to control information flow in deep networks.

 As seen in section 2.4.2, the Gated Linear Unit has a simple formulation as

the following:

ℎ𝑙𝑙(𝐗𝐗) = (𝐗𝐗 ∗𝐖𝐖 + 𝐛𝐛) ⊗𝜎𝜎(𝐗𝐗 ∗ 𝐕𝐕 + 𝐜𝐜)

The gate retains the non-linear capability of the unit so no additional activation

function is needed. 𝑋𝑋 is the input of the layer, 𝑊𝑊, 𝑏𝑏 are linear transformations

applied to 𝑋𝑋 and 𝑉𝑉, 𝑐𝑐 are learned parameters for controlling the gates. 𝜎𝜎 is the

sigmoid function.

 We adopt the Gated Linear Units as the default type of unit for all units in the

network.

- 35 -

4 EXPERIMENTS

Experiments were conducted to evaluate the effect of flexible priors, hierarchical

stochastic units and gating mechanisms in the context of collaborative filtering.

Our proposed models are compared to other state-of-the-art collaborative filtering

models. The experiments were made on three popular benchmark datasets (Mov-

ieLens, Netflix, Pinterest) and one private dataset (Melon).

4.1 Setup

The problem setup is for the Collaborative Filtering algorithms to make recom-

mendations using binary implicit feedback. The models can use only the pure

user-item interaction history with no information about the context or item content.

4.1.1 Baseline Models

We use the most popular Matrix Factorization models and state-of-the-art Auto-

encoder models as baseline models to compare with our model.

• Weighted Matrix Factorization (WMF) [15]: A linear low-rank matrix

- 36 -

factorization model trained with alternating least squares. The model is

explained in detail in section 2.1.1. The weights on all the 0’s were set to

1 and the weights on all the 1’s were tuned among {2, 5, 10, 30, 50, 100}.

Also the dimension of the latent representation was set between {100,

200}.

• SLIM [23]: A linear model which learns a sparse item-to-item similarity

matrix through solving a L1-regularized constrained optimization prob-

lem. The regularization parameters were searched over {0.1, 0.5, 1, 5}.

• Collaborative Denoising Autoencoder (CDAE) [38]: An autoencoder

collaborative filtering model with additional noise injection and per-user

latent factor in the input. The noise injection is used for learning more

robust representations and is explained in section 2.1.2. The latent di-

mension was set to 200 with tanh activations for the network. Since the

number of parameters for CDAE grows linearly with the number of users

and items, overfitting was controlled by applying weight decay with the

parameter examined over {0.01, 0.1, … , 100}.

• Multi-VAE [19]: Variational autoencoder with multinomial likelihood.

The model is thoroughly explained in section 2.3 and was shown to

achieve state-of-the-art results in the collaborative filtering context.

Modeling the per-user variances in the latent state zu led to superior re-

sults compared to the original autoencoder. Tanh activations were used

and parameters such as beta, dimension of the hidden layers and latent

state are tuned in accordance with all the other proposed models follow-

ing 4.3.

- 37 -

4.1.2 Proposed Models

Models to evaluate the individual effects of flexible priors, HVAE, and gating are

the following.

• Multi-VAE (Gated): The Multi-VAE model with gating mechanisms.

Gated Linear Units were used for all hidden units in the network. This

model was studied for the individual effect of gating on the original VAE

for CF and comparison.

• Vamp: Variational autoencoder with a VampPrior as the prior distribu-

tion instead of the original standard gaussian prior. We can compare with

Multi-VAE to evaluate the effect of using flexible priors.

• H + Vamp: Hierarchical VAE with the VampPrior, the difference to the

Vamp model is that it has hierarchical stochastic units to model the latent

representation.

Our final proposed model:

• H + Vamp (Gated): Our final model, additional gating mechanisms are

applied to the H + Vamp above. Gated Linear Units are used for all hid-

den units in the network.

4.1.3 Strong Generalization

The performance of various models was evaluated under the strong generalization

setting [19, 21]. All users are split into training/validation/test sets. Models are

trained using the entire click history of training users. For evaluation, we take 80%

of the click history from the validation (or test) dataset to calculate the necessary

user-level representations and predict the remaining 20% of the dataset.

- 38 -

4.1.4 Evaluation Metrics

We use the metrics NDCG@K and Recall@K to evaluate the performance of the

models. Recall@K can be interpreted as a metric that calculates how much the

top-k prediction of the model is actually in the held-out test set. Truncated Nor-

malized Discounted Cumulative Gain (NDCG@K) is a metric that also considers

the rankings of the top-k prediction of the model.

Recall@K:

𝑅𝑅𝑅𝑅𝑐𝑐𝑅𝑅𝑀𝑀𝑀𝑀@𝐾𝐾(𝑢𝑢,𝜔𝜔) ∶=
∑ 𝕀𝕀[𝜔𝜔(𝑘𝑘) ∈ 𝐼𝐼𝑢𝑢]𝐾𝐾
𝑘𝑘=1
min (𝐾𝐾, |𝐼𝐼𝑢𝑢|}

NDCG@K:

𝐷𝐷𝐷𝐷𝐷𝐷@𝐾𝐾(𝑢𝑢,𝜔𝜔) ∶= �
2𝕀𝕀[𝜔𝜔(𝑘𝑘)∈𝐼𝐼𝑢𝑢] − 1

log (𝑟𝑟 + 1)

𝐾𝐾

𝑘𝑘=1

NDCG@K is the DCG@K normalized by dividing by the best possible DCG@K,

where all held-out items are ranked at the top.

4.2 Datasets

The baseline models and proposed model were evaluated on four datasets. Three

are popular benchmark datasets: MovieLens, Netfilx, Pinterest. The other is data

from the largest music streaming platform in Korea: Melon.

• MovieLens: the public MovieLens 20M dataset. Ratings are binarized by

keeping only ratings of four or higher, interpreting them as implicit feed-

back. We only keep users who have watched at least 5 movies.

• Netflix: benchmark dataset used at the Netflix Price. Similar to ML20M,

- 39 -

explicit feedback is binarized by keeping ratings of four or higher. We

only keep users who have watched at least 5 movies.

• Pinterest: open source public dataset of the social network and image

platform Pinterest. We only keep users who have at least 20 interactions

(pins) as in [11].

• Melon: streaming history of 8 days from the largest music streaming plat-

form in Korea. The play count is binarized like all the other datasets. We

kept users who have listened to at least 100 songs and songs that have

been played by at least 3000 users.

 Pinterest ML-20M Netflix Melon
of users 55,169 136,677 463,435 1,111,652
of items 9,916 20,108 17,769 17,809
of interactions 1.5M 10.0M 56.9M 194.4M
% of interactions 0.27% 0.36% 0.69% 0.98%
of held-out users 5,000 10,000 40,000 100,000

Table 4-1. Summary of datasets after preprocessing

4.3 Configurations

Hyperparameters of the model were tuned through grid search of candidate values.

Model selection was done by evaluating the NDCG@100 on the validation set.

 In the case of VAE based models: Multi-VAE, Multi-VAE (Gated), Vamp,

H+Vamp and H+Vamp (Gated), the models were trained and tuned following the

exact same protocol. Note that the Multi-VAE is our strongest baseline and has

also been compared rigorously with our proposed models. The Beta parameter,

controlling the effectiveness of the prior, was selected between {0.1, 0.2, …, 1.0}.

- 40 -

The width of hidden layers {300, 600}, and size of the bottleneck Z1 and Z2

(only Z1 in the case of original VAE) {100, 200} were chosen for the best per-

formance in each separate model. In the case of models using VampPrior, the

number of components K was set to 1000. Warm-up epochs were applied on the

parameter beta and early stopping was done if the model’s NDCG@100 did not

improve on the validation set for over 50 epochs after warm-up. The ADAM op-

timizer was used for stochastic gradient descent with 200 batch size.

4.4 Results

In this section we report the experimental results comparing baseline models to

our proposed model along with the intermediate models studying the effect of

flexible priors, hierarchical stochastic units and gating mechanisms. In the case of

MovieLens and Netflix dataset, the results of WMF, SLIM and CDAE are taken

from [19]. Note that our experimental settings and data preprocessing are con-

sistent with [19] for fair comparison. We also present results of additional analysis

further studying the effect of using gates.

4.4.1 Model Performance

Here we present a summary of experimental results of the model performance for

the four different real-world datasets: MovieLens 20M, Netflix, Pinterest and

Melon. Our proposed model along with intermediate models are compared to

state-of-the-art baselines for collaborative filtering. Performance is measured for

truncated normalized discounted cumulative gain and recall on different K’s and

the result for the best performing model on each metric in marked in bold.

- 41 -

MovieLens 20M

Quantitative results on the MovieLens 20M dataset are presented in Table 4-2.

The standard errors of the statistics are around 0.002. Multi-VAE was the strong-

est baseline as expected, it showed equivalent performance to the results reported

in the original paper [19]. Vamp shows significant improvement compared to

Multi-VAE indicating the benefit of changing the restrictive standard normal prior

to a flexible VampPrior. Our final model H+Vamp (Gated) shows the best perfor-

mance and significantly outperforms the strongest baseline Multi-VAE on all met-

rics. The final model shows up to 6.52% relative increase in NCDG@20 produc-

ing new state-of-the-art results.

MovieLens 20M
Models NDCG@100 NDCG@20 Recall@50 Recall@20 Recall@10
WMF [15] † 0.386 - 0.498 0.360 -
SLIM [23] † 0.401 - 0.495 0.370 -
CDAE [38] † 0.418 - 0.523 0.391 -
Mult-VAE [19] 0.42700 0.33804 0.53524 0.39569 0.33285
Vamp 0.43433 0.34892 0.53933 0.40310 0.34413
H+Vamp 0.43684 0.35284 0.53974 0.40524 0.34911
Mult-VAE (Gated) 0.43515 0.34741 0.54498 0.40558 0.34457
H+Vamp (Gated) 0.44522 0.36008 0.55109 0.41308 0.35442

Table 4-2. Results for MovieLens 20M dataset. Standard errors are around
0.002. †Results are taken from [19], note that our datasets, metrics and experimental settings are

consistent with [19].

Netflix

Quantitative results for the Netflix dataset are presented in Table 4-3. Standard

errors are around 0.001. Similar to the MovieLens dataset, Multi-VAE is the

strongest baseline while Vamp, H+Vamp, H+Vamp(Gated) shows sequentially

- 42 -

improving performance. Our final model shows the best performance and shows

up to 9.58% relative increase in Recall@10 compared to the strongest baseline.

Netflix
Models NDCG@100 NDCG@20 Recall@50 Recall@20 Recall@10
WMF [15] † 0.351 - 0.404 0.316 -
SLIM [23] † 0.379 - 0.428 0.347 -
CDAE [38] † 0.376 - 0.428 0.343 -
Mult-VAE [19] 0.38711 0.32256 0.44429 0.35248 0.32650
Vamp 0.39589 0.33843 0.44907 0.36327 0.34275
H+Vamp 0.40242 0.34630 0.45605 0.37090 0.35129
Mult-VAE (Gated) 0.39241 0.32927 0.44958 0.35953 0.33377
H+Vamp (Gated) 0.40861 0.35251 0.46252 0.37678 0.35779

Table 4-3. Results for the Netflix dataset. Standard errors are around 0.001. †Re-
sults are taken from [19], note that our datasets, metrics and experimental settings are consistent

with [19].

Pinterest

Quantitative results on the Pinterest dataset are presented in Table 4-4. Standard

errors are around 0.002. Since WMF, SLIM and CDAE have not been evaluated

on the Pinterest dataset in [19], we only compare our models with the strongest

baseline Multi-VAE. In case of the Pinterest dataset, our final model H+Vamp

(Gated) does show increased performance but the results are not as significant as

the other datasets. Especially, the gating mechanism does not show significant

improvements if we compare Multi-VAE vs Multi-VAE (Gated) or H+Vamp vs

H+Vamp (Gated). Our final model shows a maximum of 3.03% relative increase

compared to the baseline. However, the difference for many of the metrics are

within two standard errors and therefore it is uncertain to say that there is signifi-

cant improvement.

- 43 -

Pinterest
Models NDCG@100 NDCG@20 Recall@50 Recall@20 Recall@10
Mult-VAE [19] 0.18888 0.11179 0.28485 0.15956 0.10043
Vamp 0.18983 0.11328 0.28648 0.16352 0.09942
H+Vamp 0.19026 0.11284 0.28937 0.16287 0.10082
Mult-VAE (Gated) 0.18810 0.11116 0.28683 0.16064 0.09988
H+Vamp (Gated) 0.19189 0.11416 0.28995 0.16440 0.10134

Table 4-4. Results for the Pinterest dataset. Standard errors are around 0.002.

Melon

Quantitative results for the Melon streaming dataset are shown in Table 4-5. The

Standard errors are around 0.001. Like the Pinterest dataset, we only compare be-

tween the Variational Autoencoder based models. The results show significant

improvements similar to the MovieLens and Netflix dataset. Vamp, H+Vamp ,

H+Vamp (Gated) shows sequentially increasing performance beating the baseline

Multi-VAE. Results show very significant increases in performance, with the final

model showing up to 13.08% relative increase in NDCG@20 compared to the

baseline.

Melon
Models NDCG@100 NDCG@20 Recall@50 Recall@20 Recall@10
Mult-VAE [19] 0.44325 0.40473 0.38324 0.37033 0.43536
Vamp 0.46478 0.43845 0.39845 0.39566 0.47213
H+Vamp 0.47483 0.44853 0.40731 0.40510 0.48364
Mult-VAE (Gated) 0.45378 0.41813 0.39135 0.38115 0.44966
H+Vamp (Gated) 0.48486 0.45770 0.41690 0.41389 0.49224

Table 4-5. Results for the Melon dataset. Standard errors are around 0.001.

- 44 -

4.4.2 Further Analysis on the Effect of Gating
We also conducted experiments to further study the effect of using gates. We pre-

sent the results in ndcg@100 for the Netflix dataset in Table 4-6. In this experi-

ment the number of hidden units in each layer is fixed to 6001. A two layer model

means that there are two hidden layers in each of the encoder and decoder.

We can see in Table 4-6 that for models with no gates, increasing the depth

does not bring performance gain while for gated models it does. This can be in-

terpreted that gating does help the network to propagate information through

deeper models. However, we can also see large performance gains in simply add-

ing the gates without additional layers. This tells us that the higher-level interac-

tions the self-attentive gates allow are also very helpful themselves for modeling

user preferences. One may point out that the gated model has more parameters,

but note that ungated models cannot achieve similar performance by merely add-

ing more units.

Netflix (NDCG@100) No-Gate Gated
Mult-VAE (1 Layer) 0.38711 0.39229
Mult-VAE (2 Layer) 0.38359 0.39241
Vamp (1 Layer) 0.39589 0.40169
Vamp (2 Layer) 0.39346 0.40277
H + Vamp (1 Layer) 0.40242 0.40728
H + Vamp (2 Layer) 0.37970 0.40861

Table 4-6. Comparison of performance between Gated and Un-Gated for models
of different depth2. The model with better performance (1 Layer vs 2 Layers) is

marked in bold.

1 All other hyperparameters except the number of layers were fixed as well.
2 There was no additional performance gain for adding more hidden layers than two.

- 45 -

5 CONCLUSION

In this work, we extend the VAE for collaborative filtering to adopt flexible priors

and gating mechanisms. We show empirically that standard gaussian priors may

limit the model capacity and introducing a more flexible prior can learn better

representations of the user preference. For three datasets: MovieLens 20M, Net-

flix and Melon, qualitative results show that accompanying flexible priors, hier-

archical stochastic units and gating mechanisms bring sequentially improving per-

formance. Our proposed methods show significant performance gains on large

real-world collaborative filtering datasets.

Our final model incorporating Hierarchical VampPrior VAEs with GLUs

produces new state-of-the-art results in the collaborative filtering literature. The

H+Vamp (Gated) model beats the original state-of-the-art baseline on all datasets

with up to 13.08% relative increase on the Melon dataset. While the model showed

the least amount of performance gain on the Pinterst dataset, the model is still at

least on par and marginally better than the original VAE.
We also show that gating mechanisms are suitable for the sparse user-item

interaction data. Gates provide valuable modeling capacity as well as helping in-

formation propagate through deeper networks. The Gated linear units allow for

- 46 -

higher level interactions; for example, it can extract different values of features

for the same item depending on which other items the user has consumed it with.

This may be an important feature in learning from certain user-item preference

datasets as there may be many different intentions to a consumption of the same

item.

Overall, this work is the first to address the restrictive prior problem in the

VAE-CF framework as well as introducing the potential of gating mechanisms in

non-recurrent recommender systems. The results encourage the need for exploring

more efficient architectures for variational autoencoders and neural networks in

recommender systems.

- 47 -

Bibliography

[1] Alemi, A. A., Fischer, I., Dillon, J. V., & Murphy, K. (2016). Deep Varia-
tional Information Bottleneck, 1–19. Retrieved from
http://arxiv.org/abs/1612.00410

[2] Alemi, A. A., Poole, B., Fischer, I., Dillon, J. V., Saurous, R. A., & Mur-
phy, K. (2017). Fixing a Broken ELBO.
https://doi.org/10.1080/02568543.2016.1244582

[3] Burgess, C. P., Higgins, I., Pal, A., Matthey, L., Watters, N., Desjardins,
G., & Lerchner, A. (2018). Understanding disentangling in β-VAE, (Nips).
Retrieved from http://arxiv.org/abs/1804.03599

[4] Dauphin, Y. N., Fan, A., Auli, M., & Grangier, D. (2016). Language Mod-
eling with Gated Convolutional Networks.
https://doi.org/10.1016/j.physa.2015.03.066

[5] Dieng, A. B., Kim, Y., Rush, A. M., & Blei, D. M. (2018). Avoiding Latent
Variable Collapse With Generative Skip Models, 89(2). Retrieved from
http://arxiv.org/abs/1807.04863

[6] Dilokthanakul, N., Mediano, P. A. M., Garnelo, M., Lee, M. C. H., Salim-
beni, H., Arulkumaran, K., & Shanahan, M. (2016). Deep Unsupervised
Clustering with Gaussian Mixture Variational Autoencoders, (2016), 1–12.
Retrieved from http://arxiv.org/abs/1611.02648

[7] Gatys, L. A., Ecker, A. S., & Bethge, M. (2016). Image Style Transfer
Using Convolutional Neural Networks. 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2414–2423.
https://doi.org/10.1109/cvpr.2016.265

[8] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT
press.

[9] Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
Ozair, S., … Bengio, Y. (2014). Generative Adversarial Networks, 1–9.
https://doi.org/10.1017/CBO9781139058452

- 48 -

[10] Goyal, P., Hu, Z., Liang, X., Wang, C., & Xing, E. P. (2017). Nonpara-
metric Variational Auto-Encoders for Hierarchical Representation Learn-
ing. Proceedings of the IEEE International Conference on Computer Vi-
sion, 2017-Octob, 5104–5112. https://doi.org/10.1109/ICCV.2017.545

[11] He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T.-S. (2017). Neural
Collaborative Filtering. https://doi.org/10.1145/3038912.3052569

[12] Hidasi, B., Karatzoglou, A., Baltrunas, L., & Tikk, D. (2015). Session-
based Recommendations with Recurrent Neural Networks, 1–10.
https://doi.org/10.1103/PhysRevLett.116.151105

[13] Hoffman, M. D., & Johnson, M. J. (2016). ELBO surgery: yet another way
to carve up the variational evidence lower bound. In Advances in Neural
Information Processing Systems (NIPS) (Vol. 111, pp. 1177–1183). Re-
trieved from http://approximateinference.org/accepted/HoffmanJohn-
son2016.pdf

[14] Hsu, W.-N., Zhang, Y., & Glass, J. (2017). Unsupervised Learning of Dis-
entangled and Interpretable Representations from Sequential Data, (Nips).
Retrieved from http://arxiv.org/abs/1709.07902

[15] Hu, Y., Park, F., Koren, Y., Volinsky, C., & Park, F. (n.d.). Collaborative
Filtering for Implicit Feedback Datasets.

[16] Kingma, D. P., & Welling, M. (2013). Auto-Encoding Variational Bayes,
(Ml), 1–14. Retrieved from http://arxiv.org/abs/1312.6114

[17] Koenigstein, N. (2017). Rethinking Collaborative Filtering. Proceedings
of the Eleventh ACM Conference on Recommender Systems - RecSys ’17,
336–337. https://doi.org/10.1145/3109859.3109919

[18] Li, X., & She, J. (2017). Collaborative Variational Autoencoder for Rec-
ommender Systems, 305–314. https://doi.org/10.1145/3097983.3098077

[19] Liang, D., Krishnan, R. G., Hoffman, M. D., & Jebara, T. (2018). Varia-
tional Autoencoders for Collaborative Filtering, 689–698.
https://doi.org/10.1145/3178876.3186150

[20] Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., & Frey, B. (2015).
Adversarial Autoencoders. https://doi.org/10.1016/j.msec.2012.07.027

[21] Marlin, B. (2004). Collaborative filtering: A machine learning perspective
(pp. 2239-2239). Toronto: University of Toronto.

- 49 -

[22] Nalisnick, E., & Smyth, P. (2016). Stick-Breaking Variational Autoencod-
ers, 1–12. Retrieved from http://arxiv.org/abs/1605.06197

[23] Ning, X., & Karypis, G. (2011). SLIM: Sparse LInear Methods for top-N
recommender systems. Proceedings - IEEE International Conference on
Data Mining, ICDM, 497–506. https://doi.org/10.1109/ICDM.2011.134

[24] Quadrana, M., Milano, P., Karatzoglou, A., Cremonesi, P., Milano, P., &
Gravity, R. (2017). Personalizing Session-based Recommendations with
Hierarchical Recurrent Neural Networks.

[25] Rakesh, V., Wang, S., & Shu, K. (2019). Linked Variational AutoEncoders
for Inferring Substitutable and Supplementary Items, 438–446.
https://doi.org/10.1145/3289600.3290963

[26] Rendle, S., Freudenthaler, C., Gantner, Z., & Schmidt-Thieme, L. (2012).
BPR: Bayesian Personalized Ranking from Implicit Feedback, 452–461.
https://doi.org/10.1145/1772690.1772773

[27] Sachdeva, N., Manco, G., Ritacco, E., & Pudi, V. (2018). Sequential Var-
iational Autoencoders for Collaborative Filtering, 600–608.
https://doi.org/10.1145/3178876.3186150

[28] Sedhain, S., Menon, A. K., Sanner, S., & Xie, L. (2015). AutoRec : Auto-
encoders Meet Collaborative Filtering. WWW 2015 Companion: Proceed-
ings of the 24th International Conference on World Wide Web, 111–112.
https://doi.org/10.1145/2740908.2742726

[29] Sønderby, C. K., Raiko, T., Maaløe, L., Sønderby, S. K., & Winther, O.
(2016). Ladder Variational Autoencoders, (Nips).
https://doi.org/10.1353/cjl.2008.0013

[30] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov,
R. (2014). Dropout: A Simple Way to Prevent Neural Networks from
Overfitting. Journal of Machine Learning Research, 15, 1929–1958.
https://doi.org/10.1214/12-AOS1000

[31] Tomczak, J. M., & Welling, M. (2017). VAE with a VampPrior.
https://doi.org/10.1128/AAC.47.9.2831

[32] Van den Oord, A., Dieleman, S., & Schrauwen, B. (2013). Deep content-
based music recommendation. In Advances in neural information pro-
cessing systems (pp. 2643-2651).

- 50 -

[33] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.
N., … Polosukhin, I. (2017). Attention Is All You Need, (Nips).
https://doi.org/10.1017/S0140525X16001837

[34] Vincent, P. (2011). A connection between score matching and denoising
autoencoders. Neural computation, 23(7), 1661-1674.

[35] Wang, H., Wang, N., & Yeung, D.-Y. (2014). Collaborative Deep Learn-
ing for Recommender Systems, 1235–1244.
https://doi.org/10.1145/2783258.2783273

[36] Wang, J., Yu, L., Zhang, W., Gong, Y., Xu, Y., Wang, B., … Zhang, D.
(2017). IRGAN: A Minimax Game for Unifying Generative and Discrim-
inative Information Retrieval Models.
https://doi.org/10.1145/3077136.3080786

[37] Wu, C.-Y., Ahmed, A., Beutel, A., Smola, A. J., & Jing, H. (2017). Recur-
rent Recommender Networks. In Proceedings of the Tenth ACM Interna-
tional Conference on Web Search and Data Mining - WSDM ’17 (pp. 495–
503). https://doi.org/10.1145/3018661.3018689

[38] Wu, Y., DuBois, C., Zheng, A. X., & Ester, M. (2016). Collaborative De-
noising Auto-Encoders for Top-N Recommender Systems. Proceedings of
the Ninth ACM International Conference on Web Search and Data Mining
- WSDM ’16, 153–162. https://doi.org/10.1145/2835776.2835837

[39] Zhang, S., Yao, L., & Sun, A. (2017). Deep Learning based Recommender
System : A Survey and New Perspectives, 1(1), 1–35.

[40] Zheng, G., Zhang, F., Zheng, Z., Xiang, Y., Yuan, N. J., Xie, X., & Li, Z.
(2018). DRN: A Deep Reinforcement Learning Framework for News Rec-
ommendation. Www, 2, 167–176.
https://doi.org/10.1145/3178876.3185994

[41] Zheng, Y., Tang, B., Ding, W., & Zhou, H. (2016). A Neural Autoregres-
sive Approach to Collaborative Filtering, 48.
https://doi.org/10.1109/TPAMI.2015.2476802.

- 51 -

논 문 초 록

최근 뉴럴넷 기반 협업필터링 추천알고리즘이 주목을 받고 있다. 그 중

한 갈래의 연구는 깊은 생성모형 (Deep Generative Model)을 이용해

사용자들의 선호를 모델링하는 방법이다. 이중 Variational Autoencoder 를

(VAE) 이용한 방법이 최근 state-of-the-art (SOTA) 성능을 보여주었다. 그러나

VAE 를 이용한 협업필터링 알고리즘은 현재 몇 가지의 잠재적인 문제점들을

지니고 있다. 첫 번째는 사용자 선호를 압축하는 잠재변수를 학습하는

과정에서 매우 단순한 사전분포를 사용한다는 것이다. 또 다른 문제점은

모델이 현재 여러 단을 이용한 깊은 인코더와 디코더를 사용하지 못하고

있다는 것이다. 본 연구는 최신기술들을 활용하여 앞선 문제점들을 해결하고

VAE 를 이용한 협업필터링 알고리즘의 추천성능을 더욱 높이는 것이

목표이다. 본 연구는 협업필터링 문제에 더 복잡한 사전분포 (Flexible Prior)를

적용한 첫 연구로서, 기존의 단순한 사전분포가 모델의 표현력을 제한할 수

있으며 더 복잡한 사전분포를 정의함으로써 모델의 성능을 더욱 높일 수

있음을 보였다. 이를 위해 이미지 생성 문제에서 좋은 결과를 보인 Vamp-

Prior를 이용해 실험을 진행하였다. 또한 VampPrior를 Gating Mechanisim 과

함께 사용하였을 때 기존 SOTA를 넘어서는 성능을 보임을 추천알고리즘에서

사용되는 대표적인 데이터셋들을 통해 보여준다.

주요어: 추천알고리즘, 딥러닝, 오토인코더, 생성모델, 베이지안 기계학습

학 번: 2017-29907

	1 INTRODUCTION
	1.1 Background and Motivation
	1.2 Research Goal
	1.3 Enhancing VAEs for Collaborative Filtering
	1.4 Experiments
	1.5 Contributions

	2 RELATED WORK
	2.1 Collaborative Filtering
	2.1.1 Traditional methods & Matrix-Factorization based CF
	2.1.2 Autoencoders for CF

	2.2 Deep Generative Models (VAE)
	2.2.1 Variational Bayes
	2.2.2 Variational Autoencoder

	2.3 Variational Autoencoder for Collaborative Filtering
	2.3.1 VAE for CF

	2.4 Recent research in Computer Vision & Deep Learning
	2.4.1 VampPrior
	2.4.2 Gated CNN

	3 METHOD
	3.1 Flexible Prior
	3.1.1 Motivation
	3.1.2 VampPrior
	3.1.3 Hierarchical Stochastic Units

	3.2 Gating Mechanism
	3.2.1 Motivation
	3.2.2 Gated Linear Units

	4 EXPERIMENT
	4.1 Setup
	4.1.1 Baseline Models
	4.1.2 Proposed Models
	4.1.3 Strong Generalization
	4.1.4 Evaluation Metrics

	4.2 Datasets
	4.3 Configurations
	4.4 Results
	4.4.1 Model Performance
	4.4.5 Further Analysis on the Effect of Gating

	5 CONCLUSION
	Bibliography
	국문초록

<startpage>10
1 INTRODUCTION 1
 1.1 Background and Motivation 1
 1.2 Research Goal 3
 1.3 Enhancing VAEs for Collaborative Filtering 3
 1.4 Experiments 5
 1.5 Contributions 5
2 RELATED WORK 7
 2.1 Collaborative Filtering 7
 2.1.1 Traditional methods & Matrix-Factorization based CF 8
 2.1.2 Autoencoders for CF 12
 2.2 Deep Generative Models (VAE) 17
 2.2.1 Variational Bayes 18
 2.2.2 Variational Autoencoder 18
 2.3 Variational Autoencoder for Collaborative Filtering 20
 2.3.1 VAE for CF 21
 2.4 Recent research in Computer Vision & Deep Learning 24
 2.4.1 VampPrior 24
 2.4.2 Gated CNN 25
3 METHOD 28
 3.1 Flexible Prior 29
 3.1.1 Motivation 29
 3.1.2 VampPrior 30
 3.1.3 Hierarchical Stochastic Units 31
 3.2 Gating Mechanism 32
 3.2.1 Motivation 32
 3.2.2 Gated Linear Units 34
4 EXPERIMENT 35
 4.1 Setup 35
 4.1.1 Baseline Models 35
 4.1.2 Proposed Models 37
 4.1.3 Strong Generalization 37
 4.1.4 Evaluation Metrics 38
 4.2 Datasets 38
 4.3 Configurations 39
 4.4 Results 40
 4.4.1 Model Performance 40
 4.4.5 Further Analysis on the Effect of Gating 44
5 CONCLUSION 45
Bibliography 47
국문초록 51
</body>

