1,141 research outputs found

    A review of relay network on UAVS for enhanced connectivity

    Get PDF
    One of the best evolution in technology breakthroughs is the Unmanned Aerial Vehicle (UAV). This aerial system is able to perform the mission in an agile environment and can reach the hard areas to perform the tasks autonomously. UAVs can be used in post-disaster situations to estimate damages, to monitor and to respond to the victims. The Ground Control Station can also provide emergency messages and ad-hoc communication to the Mobile Users of the disaster-stricken community using this network. A wireless network can also extend its communication range using UAV as a relay. Major requirements from such networks are robustness, scalability, energy efficiency and reliability. In general, UAVs are easy to deploy, have Line of Sight options and are flexible in nature. However, their 3D mobility, energy constraints, and deployment environment introduce many challenges. This paper provides a discussion of basic UAV based multi-hop relay network architecture and analyses their benefits, applications, and tradeoffs. Key design considerations and challenges are investigated finding fundamental issues and potential research directions to exploit them. Finally, analytical tools and frameworks for performance optimizations are presented

    UAV-Empowered Disaster-Resilient Edge Architecture for Delay-Sensitive Communication

    Full text link
    The fifth-generation (5G) communication systems will enable enhanced mobile broadband, ultra-reliable low latency, and massive connectivity services. The broadband and low-latency services are indispensable to public safety (PS) communication during natural or man-made disasters. Recently, the third generation partnership project long term evolution (3GPPLTE) has emerged as a promising candidate to enable broadband PS communications. In this article, first we present six major PS-LTE enabling services and the current status of PS-LTE in 3GPP releases. Then, we discuss the spectrum bands allocated for PS-LTE in major countries by international telecommunication union (ITU). Finally, we propose a disaster resilient three-layered architecture for PS-LTE (DR-PSLTE). This architecture consists of a software-defined network (SDN) layer to provide centralized control, an unmanned air vehicle (UAV) cloudlet layer to facilitate edge computing or to enable emergency communication link, and a radio access layer. The proposed architecture is flexible and combines the benefits of SDNs and edge computing to efficiently meet the delay requirements of various PS-LTE services. Numerical results verified that under the proposed DR-PSLTE architecture, delay is reduced by 20% as compared with the conventional centralized computing architecture.Comment: 9,

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    A novel collaborative IoD-assisted VANET approach for coverage area maximization

    Get PDF
    Internet of Drones (IoD) is an efficient technique that can be integrated with vehicular ad-hoc networks (VANETs) to provide terrestrial communications by acting as an aerial relay when terrestrial infrastructure is unreliable or unavailable. To fully exploit the drones' flexibility and superiority, we propose a novel dynamic IoD collaborative communication approach for urban VANETs. Unlike most of the existing approaches, the IoD nodes are dynamically deployed based on current locations of ground vehicles to effectively mitigate inevitable isolated cars in conventional VANETs. For efficiently coordinating IoD, we model IoD to optimize coverage based on the location of vehicles. The goal is to obtain an efficient IoD deployment to maximize the number of covered vehicles, i.e., minimize the number of isolated vehicles in the target area. More importantly, the proposed approach provides sufficient interconnections between IoD nodes. To do so, an improved version of succinct population-based meta-heuristic, namely Improved Particle Swarm Optimization (IPSO) inspired by food searching behavior of birds or fishes flock, is implemented for IoD assisted VANET (IoDAV). Moreover, the coverage, received signal quality, and IoD connectivity are achieved by IPSO's objective function for optimal IoD deployment at the same time. We carry out an extensive experiment based on the received signal at floating vehicles to examine the proposed IoDAV performance. We compare the results with the baseline VANET with no IoD (NIoD) and Fixed IoD assisted (FIoD). The comparisons are based on the coverage percentage of the ground vehicles and the quality of the received signal. The simulation results demonstrate that the proposed IoDAV approach allows finding the optimal IoD positions throughout the time based on the vehicle's movements and achieves better coverage and better quality of the received signal by finding the most appropriate IoD position compared with NIoD and FIoD schemes. © 2013 IEEE
    corecore