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ABSTRACT Internet of Drones (IoD) is an efficient technique that can be integrated with vehicular ad-hoc
networks (VANETs) to provide terrestrial communications by acting as an aerial relay when terrestrial
infrastructure is unreliable or unavailable. To fully exploit the drones’ flexibility and superiority, we propose
a novel dynamic IoD collaborative communication approach for urban VANETs. Unlike most of the existing
approaches, the IoD nodes are dynamically deployed based on current locations of ground vehicles to
effectively mitigate inevitable isolated cars in conventional VANETs. For efficiently coordinating IoD,
we model IoD to optimize coverage based on the location of vehicles. The goal is to obtain an efficient
IoD deployment to maximize the number of covered vehicles, i.e., minimize the number of isolated vehicles
in the target area.More importantly, the proposed approach provides sufficient interconnections between IoD
nodes. To do so, an improved version of succinct population-based meta-heuristic, namely Improved Particle
Swarm Optimization (IPSO) inspired by food searching behavior of birds or fishes flock, is implemented
for IoD assisted VANET (IoDAV). Moreover, the coverage, received signal quality, and IoD connectivity
are achieved by IPSO’s objective function for optimal IoD deployment at the same time. We carry out
an extensive experiment based on the received signal at floating vehicles to examine the proposed IoDAV
performance. We compare the results with the baseline VANET with no IoD (NIoD) and Fixed IoD assisted
(FIoD). The comparisons are based on the coverage percentage of the ground vehicles and the quality of the
received signal. The simulation results demonstrate that the proposed IoDAV approach allows finding the
optimal IoD positions throughout the time based on the vehicle’s movements and achieves better coverage
and better quality of the received signal by finding the most appropriate IoD position compared with NIoD
and FIoD schemes.

INDEX TERMS Internet of Things, Internet of Drones, intelligent transportation system, vehicular ad hoc
networks, improved particle swarm optimization.

I. INTRODUCTION
Recently, Intelligent Transportation Systems (ITS) have
received significant attention as a leading technology to
exploit the smart devices involved in the transportation object
that improves transportation systems. The importance of the
ITS lies in many factors, such as increasing the global popu-
lation, globalization, and modernization, which lead to high
demands for vehicle transportation. Furthermore, the harm-
ful effects on the environment and awareness are raised
due to the congestion and inefficient vehicles. It is worth
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mentioning that the promising development in telecommu-
nications and computing technologies has accelerated the
researches towards smart transportation [1]. This fast growth
of paradigm is characterized by an open architecture that
allows transportation objects to interact and cooperate in
executing a wide range of tasks [2]. Besides, enabling a
plethora of applications such as intelligent guidance and
collision avoidance provides comfort and convenience as
well as increases safety during driving. Therefore, the ITS
is expected to play a significant role in future smart cities [3].

In VANET networks, the vehicles are allowed to move in
the path and able to communicate with stationary stations and
with each other alongside the path which is the main idea
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behind the VANETs. Although, ITS provides essential ser-
vices in which most of them mainly rely on connectivity and
communications among vehicles, the links between vehicles
could be lost due to path loss or severe shadowing. In this
regard, ITS’s serious challenge arises because of frequent
topology change of VANET due to the dynamic movement of
vehicles where the connectivity of a vast number of vehicles
is always intermittent [3]–[5]. Besides, the link quality is
another challenge in VANET, where communication tech-
nology such as 802.11p is highly sensitive to obstacles and
distance.

Recently, drones, known as Unmanned Aerial Vehicles
(UAVs), have seen significant consideration for numerous
applications, including surveillance, military, telecommuni-
cations, medical supplies delivery, rescue operations, and
monitoring [6]–[9]. Due to their unique features such as
agility, mobility, and flexibility, UAVs offer high freedom of
movement that allows UAVs to navigate remote and rough
areas that humans cannot access.

The Internet of Drones (IoD) term is an integration of
drones into a network of IoT [10] and defined as a layered
network control architecture designed mainly to coordinate
UAVs’ access to control airspace and provide navigation
services between locations known as nodes [11]. In these
applications, IoD can support an efficient mean not only to
enhance traffic policy in the ground and enforce traffic rule,
but also to provide efficient information dissemination to the
ground users.

The IoD paradigm offers a significant feature which is
its ability to have line-of-sight (LOS) connections toward
the users due to drones’ elevations. That is, when tradi-
tional ground networks are damaged, UAVs can support
efficient and effective temporary communication networks
[12]. Unlike ground nodes that have to follow a specific
route, the nodes in IoD can move freely in three-dimensional
space and fly above high buildings which may obstruct the
ground vehicle’s communication. Thus, the LOS communi-
cation can be established effectively by adjusting the drones’
altitudes and mitigating shadowing and signal blockage.
Towards this end, dedicated UAVs are employed as aerial
access points (APs), relays, roadside units (RSUs), or base
stations (BSs) to provide wireless ground network communi-
cations, which is called UAV-assisted wireless communica-
tion. The UAV-assisted has become an alternative connection
for ground vehicles [13] and attracts the attention of extensive
researchers [14], [15].

Based on the above tremendous advantages of drone,
vehicular to vehicular (V2V) communication, which is
a kind of device to device (D2D) communication [16],
[17], can be supported by IoD network when a direct
multi-hop link between vehicles is not available. In this
case, IoD can be utilized as a relay network to main-
tain the reliable wireless communication links between
vehicles on the ground [18]. Besides, the wireless net-
work’s performance can be improved significantly using
IoD in different scenarios such as emergency situations

and temporary hot-spots when acting as flying RSUs
or BSs.

The interconnected nodes in the IoD network make it fault
tolerance and robustness. Furthermore, the interconnected
IoD network can be easily integrated with other networks
and fast deployed in difficult conditions to provide the com-
munication in which ground infrastructures get damaged or
the manually deploying them are almost impossible. In this
case, temporary communication is provided to connect the
disconnected targets in that area [19]. Coverage problems
with ground vehicles have been examined extensively in the
literature. Moreover, the harsh terrains can significantly limit
the maneuverability of ground mobile vehicles. Generally
speaking, two main factors affect the connectivity of IoD and
ground network namely LOS and the path loss. It has to stress
that deploying IoD at high altitude enhances LOS condition
but increases the distance between sender and receiver which
in turn increases the path loss. To maintain the range of the
received signal and achieve LOS, IoD positions should be
optimized using an appropriate mechanism.

In this paper, we propose implementing an optimiza-
tion algorithm to obtain the optimal deployment of IoD
in a dynamic vehicular communications environment. The
adopted deployment of IoD at any instant of time allows
providing communication between vehicles on the ground.
We consider the coverage as the number of vehicles cov-
ered by the IoD network. Such an optimum deployment is
determined by considering the current locations of ground
vehicles and can be evaluated by considering the quality of the
received signal at the receivers, i.e., vehicles on the ground.

The main contribution of this work is utilizing IoD as a
relay network at optimum coverage base-on cars’ locations
using Received Signal Strength Indicator (RSSI). In this
work, the improved version of the Particle Swarm Optimiza-
tion (IPSO) algorithm in [2] is implemented to achieve the
aforementioned objectives so that sufficient signal strength
towards all isolated vehicles on the ground can be achieved
by the IoD network to guarantee the best coverage at each spe-
cific time. Moreover, the connectivity of the IoD network is
addressed by the proposed optimization approach where the
objective function includes the connectivity to be achieved for
a better solution. Furthermore, we design an IoDAV to boost
the VANET communication performances. Based on the
vehicles’ distribution on the ground, the proposed approach
dispatches the IoD nodes to the most appropriate locations in
real-time. The main assumption is that lack of infrastructures
exists in the environment and the connectivity among vehicles
is minimum. For example in urban area, the buildings may
obstruct the line of sight and the connectivity among vehicles
is lost. Besides, themovement of UAVs in IoD aims to explore
the 3D space to offer the connectivity to the ground vehicles.

The contributions of this work can be summarized as
follows:

1. A novel collaborative IoD architecture is proposed and
integrated with VANETs. For a specific location, the demand
for UAVs is evaluated using an optimization evaluation
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function to obtain the optimal deployment of IoD to assist
the VANET.

2. The population optimization scheme is designed to
improve the proposed model. The optimization scheme has
enabled the IoD nodes dispatching to the best service loca-
tions andmaintains the connectivity constraint of the IoD net-
work so that the efficiency of IoDAVs approach is enhanced.

3. Extensive simulation experiments are conducted to test
the model performance and to evaluate the proposed model.
The simulation results are discussed and analyzed in detail.

The rest of this paper is organized as follows: Section II
presents the literature review. In Section III, the IoDAV
mechanism description is illustrated. Section IV explains the
optimal IoD deployment which includes the formulation of
IoDAV and Optimization problem. Section V discusses in
detail the population optimization for coverage. The frame-
work of optimization is illustrated in section VI. In section
VII the simulation results and the corresponding analysis are
discussed. The work is finally concluded in Section VIII.

II. LITERATURE REVIEW
Recently, various technologies have been introduced to
complement the services of the Internet of Things (IoT)
[20]. The deployment of UAVs in IoT [21] offers unprece-
dented potentials. In this section, we review several mech-
anisms used to improve the coverage of the target area
and UAVs-Assisted VANETs. The deployment strategy has
become useful in wireless networks to obtain the best perfor-
mance [22]. we classify the literature into two types namely,
RSU Deployment and UAVs Assisted Deployment.

A. RSU DEPLOYMENT
In [23], the placement algorithm of BS was proposed for
network capacity maximization. However, the information
dissemination performance can be impacted by node place-
ment, acting as a relay node. In [24], the authors discussed
the optimal placement of RSU to improve the intersection
connectivity. The best position of RSU can be found by the
proposed scheme using the reports from vehicles within the
RSU communication range. In [25], the RSU deployment to
maximize the number of connected vehicles is proposed. The
average report time from vehicles is minimized by the place-
ment strategy proposed in [26]. Nevertheless, the terrestrial
obstacles hinder the transmitted signal when located between
sender and receiver which limits Vehicles-to-infrastructure
(V2I) communication. The flying RSU is a promising tech-
nique to cope with terrain obstacles and provide communica-
tion between vehicles on the ground which can be achieved
using UAVs.

B. UAVs ASSISTED DEPLOYMENT
The UAV has the potential for acting as wireless BS or RSU
to relay information between nodes in the ground networks
especially when the terrestrial infrastructure capacity is not
adequate for request handling in hot-spot areas. Furthermore,
in remote and harsh environments, deploying ground BSs

becomes difficult and inefficient. Such an environment can be
covered using drones to extend the coverage of the network.

To tackle the limitations of low energy IoT nodes, UAVs
are employed in [27] as a data collector and energy supplier.
An efficient deployment approach to support better coverage
for the ground users is proposed in [28] in which drones
are considered as wireless base stations. The probability of
download coverage is defined as a function of the UAV’s
height and antenna gain. Furthermore, the circle parking
theory is used, and the 3D locations of drones that maximize
the drone’s lifetime and achieve the maximum coverage for
the whole region are calculated. Nevertheless, to avoid the
interference issue, the drone’s height should be defined based
on the directional antenna’s beamwidth and the coverage
requirements. The work in [29] analyzed the optimal deploy-
ment of UAVs in a multi-level and multi-dimensional assisted
network. The distributed approach was based on a potential
game approach. Moreover, self-organized behavior where
local and global policies participated in decision making for
each UAV was utilized

Recently, significant progress has been made in
population-based evolutionary algorithms to obtain the best
position of UAVs to assist the ground network. In [30],
the authors propose an optimization for resource allocation
and joint access selection where UAVs are acting as aerial
BS. The ground BS allocates its resource based on the access
selection decision of UAV. Based on allocated communica-
tion resources, drones decide their selection strategy. In [31],
a 3D placement strategy of UAV is proposed by optimizing
the problem for coverage and throughput maximization with
the drone’s memory constraint consideration. The optimiza-
tion problem is divided into two parts. The first part aims
to obtain the optimal position of the drone and the second
part solves the optimal caching strategy. The authors in [32]
proposed amechanism to obtain the best position of drone in a
disaster scenario to support the nodes’ connectivity in indoor
buildings. A strategically located drone is utilized to cover
all users inside the building so that the minimum transmitted
power is maintained. In [33], the optimal placement of UAV
can be obtained using Particles Swarm Optimization (PSO)
algorithm. The aim of the work is to maximize the coverage
area while the drone capacity is still considered in the scope
of the disaster and public safety. In [34], the brainstorm
optimization algorithm is used to obtain the optimal position
of UAVs for coverage quality improvement of the network.
Furthermore, the use of the available number of UAVs was
mentioned in [35] for covering all the targets while mini-
mizing the rate of data dissatisfaction between end devices
and their communication services. However, their research
work didn’t include it. In [36], the bio-inspired algorithms
with multi-objective were proposed to obtain the optimal
UAVs flight path. The proposed algorithm included several
objectives such as energy, sensing ability, associated risk, and
flight time. Moreover, the optimal height of a 3D placement
of available UAVs is illustrated in [37]. The authors consider
three objectives to be optimized namely target coverage,
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Quality of Service (QoS), and energy consumption. Fur-
thermore, four optimization algorithms are utilized to solve
placement problems. To maintain the connectivity of UAVs,
the authors create a grid-based connectivity network called
Aerial Mesh Network (AMN). However, they consider only
static coverage in which drones hover to a given target area.
Also, the covered targets are static (i.e they don’t move during
the mission). Additionally, the work optimizes the altitude
of drones to generate a near-optimal height deployment of
drones to cover the target devices and achieve QoS and
minimum transmission data energy consumption.

In urban terrain, the infrastructures and buildings constrain
the communication and movement of vehicles [38]. The use
of drones in VANET assisted achieves a great improvement
in the VANET connectivity, because the UAVs can fly at
a high altitude beyond all the infrastructures of terrestrial
allowing the movement of UAVs to be much less influenced
by terrestrial constraints. Furthermore, fewer influences on
the drones’ transmission in the air can be generated by ter-
restrial obstacles. Based on these advances, UAV becomes
an appropriate VANET assistant. Various schemes on the
deployment of UAVs to support the vehicular communication
are proposed. The author in [39] proposed a drone position
algorithm in which the quality of services communication is
offered to vehicles in the ground.

To obtain the optimum connectivity between the drones
and vehicles, the best position of the UAVs so that adequate
signals can be transmitted to the ground vehicles is needed. In
paper [40], an urban VANET routing solution was proposed.
It ensured reliable and alternative paths when the path failed.
Further, in [41], the incidents are detected on the urban road
by deploying the UAVs to provide the vehicle emergency
guidance. Moreover, the end-to-end delay is reduced among
cars by designing a hybrid vehicle drone ad-hoc network in
[42]. In paper [43], the deployment of LTE connectivity for
drones is studied. Some challenges are highlighted such as
LOS propagation in the sky. In [44], the terrestrial infrastruc-
ture is replaced with a drone to minimize the V2I delay on
the straight road. The authors in [45] proposed using a drone
to improve the packet delivery ratio and reduce the delay.
In [46], the drones are used to select the optimal path as an
alternative path to achieve the stability and distribution of the
cars.

In conclusion, some previous works achieved improve-
ments in ground network performance such as coverage,
throughput, routing, and end to end delay. Other works
focused on maximizing coverage area based on download
facing camera. Others achieved improvements in VANETs
performance, but focus on routing protocols, or considered
the static ground infrastructure. Generally, the full exploita-
tion of superiority of drones to minimize isolated cars is
omitted or neglected in the previous work.

Our proposed approach aims to design the IoDAV to boost
the VANET communication performances. Based on the dis-
tribution of vehicles on the ground, the proposed approach
dispatches the IoD nodes (UAVs) to the most optimized

locations dynamically in real-time. The optimal deployment
of the IoD nodes is determined to maximize the coverage area
(i.e minimize the number of isolated vehicles on the ground).
Additionally, the deployment of IoD nodes is adjusted to
adopt the dynamic movement of vehicles on the ground.

III. IoD-ASSISTED VANET MECHANISM
As discussed in section II, the reviewed work related
to VANET intended to enhance the performance of the
VANET network, however, the UAV’s mobility superiority
was neglected. By controlling a few numbers of UAVs in a
wide area, several infrastructures can be dispensed. There-
fore, the VANET can be assisted by leveraging dynamic
UAVs. As shown in Fig.1, an IoD-Assisted-VANET model
consisting of the VANET network and IoD network is pro-
posed. The VANET network consists of terrestrial vehicles on
the ground and their mobilities are restricted by predefined
roads and traffic regulations. Additionally, the quality of
communication is impacted by the surrounding environment.
The IoD network, which is integrated with VANET, consists
of UAVs swarm with wireless communication. The UAVs
swarm are responsible for supporting the connectivity among
vehicles. Thanks to their flexible mobility, they can be easily
dispatched to the most appropriate locations where the relay
is required among vehicles. Fig.1 illustrates the effectiveness
of the proposed IoDAVarchitecture inwhich the vehicles can-
not communicate directly within their communication range.
The buildings are considered as obstacles and hinder the
transmitted signal. Thus, UAV1 and UAV2 are dispatched to
suitable positions, where vehicles are isolated by building and
can neither communicate nor transmit data to infrastructure.
The two UAVs act as a relay to create a connection among
those separated vehicles.

It is noteworthy that the positions of UAVs are updating
periodically based on the movement of ground vehicles and
the state of received signal therein. The UAVs are first dis-
patched to the appropriate locations and then hover therein
to provide communication among isolated vehicles. As the
vehicles move, the distance between them increases and they
might be isolated by obstacles lying between them, which in
turn lose the connection. Then, the IoD’s location is updated
to connect the isolated vehicles.

IV. OPTIMAL IoD DEPLOYMENT
In this section, we will describe the formulation of IoD
deployment. Particularly, we will explain how the optimiza-
tion algorithm addresses the drone’s positions as well as the
optimization algorithm used.

A. PROBLEM FORMULATION OF IoD-ASSISTED VANET
The deployment of drones has been impacted by their cov-
erage, which can be classified into static and dynamic cov-
erage. In the former, the UAVs hover in the target region
during the whole mission time. The complete design goal,
such as maximizing the coverage area, has to be achieved
in the deployment. In the letter, the UAVs keep changing
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FIGURE 1. IoD-assisted VANET architecture.

their positions during the mission depending on the current
locations of ground nodes. Besides, we focus on dynamic
deployment with the aim of maximizing the coverage area
in a 3D environment. To do so, we consider the scenario
including many vehicles that follow specific paths on the
existing region. Also, in the considered scenario, the area
lacks sufficient infrastructures and the IoD will help to relay
the information among vehicles. It is noteworthy that the loca-
tions of IoD nodes are changing throughout time depending
on the locations of ground vehicles. At every time step, when
the vehicles on the ground move, the new optimal locations
of IoD have to be evaluated.

B. OPTIMIZATION PROBLEM
Our main objective is to obtain the best position of inter-
connected IoD network in a 3D environment so that the
transmitted signals from IoD nodes can be received by all Iso-
lated vehicles in the ground with sufficient power reception.
Such dynamic deployment requires an efficient technique to
dispatch the drones to the optimal locations. Furthermore,
obtaining the best locations of IoD nodes by trying all pos-
sible locations in the space at each time step is an inefficient
way. This is because it consumes a lot of resources and takes
a lot of time which is considered as an NP-hard problem.

The sophisticated solution is to use a meta-heuristic algo-
rithm where the optimal solution can be obtained without
testing all possible values. Instead, the random position is
generated and evaluated using the fitness function. Then
the iterative manner is used to search for the best possi-
ble solution. Among those population-based, PSO, swarm
intelligence algorithms, is one of the intelligent algorithms
employed in the deployment problem. In this work, we con-
sider the dynamic coverage using the improved version of
intelligent optimization technique i.e IPSO.

The RSSI metric in the received vehicles is utilized by
the objective function to evaluate the generated positions and
the best positions of IoD nodes are selected. On the receiver

side, the RSSI is selected and compared with the minimum
threshold. In our work, the minimum threshold is defined to
be −86dBm (the threshold for successful packet delivery).
Particularly, to achieve full coverage connectivity, the average
RSSI should be greater than the minimum threshold. More
importantly, the RSSI metric is utilized to calculate the num-
ber of covered vehicles in the ground by the IoD network.
At each vehicle, we analyze the RSSI when the positions of
IoD nodes are selected. Then the vehicle is counted to be
covered if RSSI is greater than the minimum threshold. In the
next section, the optimization algorithm utilized in our work
is explained in detail.

V. IMPROVED PARTICLES SWARM OPTIMIZATION FOR
COVERAGE
To address the formulated problem, the IoDAV approach has
to work in real-time. In this context, we propose an effective
population scheme, IPSO, for IoDAV to design the feasi-
ble collaborative approach. The IoDAV dispatches multiple
UAVs to different positions for optimal deployment. Obvi-
ously, this approach is designed to integrate the IoD network
with the VANET network for assistant in infrastructure-less
scenarios that need relay nodes for communication. IPSO is
an enhanced version of traditional PSO. It avoids trapped in
local optima and searches for the global optima in a more
accurate and faster way. The enhancements are improving
the initialization stage by using uniform initial distribution as
in eq.1.

Xn+1 = µXn(1− Xn), (1)

whereXn represents the nth chaotic variable,µ is a bifurcation
coefficient. Then the velocity is updated using

νt+1=ωνt + c1r1(pBestt − xt )+ c2r2(gBestt − xt ), (2)

where c1, c2 are acceleration coefficients, r1, r2 are random
variables, and ω is an inertia weight. The position of each
particle is updated using

x(t + 1) = x(t)+ εν(t + 1), (3)

where ε selects how fast the particle moves. Furthermore,
the parameters Inertia Weight (ω) and Epsilon(ε) are updated
to balance global and local search using the following (4)
and (5) equations respectively.

ω(t) = ωmin +
MaxIt − t
MaxIt

∗ (ωmax − ωmin), (4)

ε = εmax −
(εmax − εmin)t

MaxIt
, (5)

where MaxIt is maximum simulation time and t is current
simulation time, ωmin, ωmax are minimum and maximum
value of inertia, respectively, εmax , εmin are constant value and
εmax > εmin.
The inactive particles are replaced by new fleshing

particles to rich the diversification search of the algorithm.
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The pseudo-code of IPSO for IoDAV is explained in the
algorithm 1. The parameters of the algorithm such as accel-
eration coefficients c1 and c2 are initialized in the initial-
ization part of the algorithm. The initialization part is also
responsible to create the initial position and velocity of all
particles. The algorithm receives parameters and environment
constraints and returns the best locations of all UAVs that
achieve the maximum coverage. For each iteration, the infor-
mant particles are assessed and the solution that achieves
the best coverage is stored in LBest with the corresponding
coverage andRSSI. The velocity and position of each solution
are updated using eq.2 and eq.3 respectively. Then the fitness
of generated solution is evaluated and compared with LBest
solution. Moreover, the GBest is compared with LBest and
the best overall solution is stored in GBest. Note that if
two solutions achieve the same coverage, the solution with a
higher average RSSI is selected as the best. Finally, the global
solution that includes the best positions of IoD nodes with
maximum coverage and RSSI is returned. It has to stress that
the IoD is an interconnected network meaning that the GBest
includes interconnected nodes of IoD.

VI. OPTIMIZATION FRAMEWORK
The IoDAV aims to enhance the connectivity of
infrastructure-less VANET network by optimally deploying
the IoD network. To this end, the sophisticated approach
based on a meta-heuristic algorithm is implemented to dis-
patch the IoD nodes to the optimal locations and maintain the
connectivity of the IoD network. The proposed approach is
implemented in the OMNET++ tool [47] and the framework
is illustrated in Fig.2. The new module is developed as an
extension to theOMNET++ network simulator to implement
the IPSO. The aim of this module is to optimally place IoD
nodes so that the number of covered vehicles on the ground
is maximized, i.e dispatching the IoD nodes to the most
appropriate locations, in addition to maintain the connectivity
of the IoD network. Furthermore, the map is generated using
the SUMO NetEdit tool and the traffic simulator SUMO
[48] is utilized to mimic the movements of vehicles on the
ground. Besides, the information of mobility from SUMO
is polled at fixed intervals. Moreover, for more realistic
vehicles communications, the Veins simulator [49] is used.
Whenever the departure of a mobile node is simulated by
SUMO, the dedicated simulation module is created by Veins
in OMNET++. Then, Veins updates the speed, position,
and heading of the mobile node in the created module in
OMNET++ as the mobile node moves in SUMO. Similarly,
the OMNET++module is removed from the simulator when
the mobile node arrives at its destination in SUMO. This way,
the mobility of node in OMNET++ is coupled to that in
SUMO by Veins [50].

In light of the above illustration of the framework, the IoD
deployment module receives the instantaneous locations of
vehicles on the ground and dispatches IoD nodes to the
most appropriate locations to maximize the number of cov-
ered vehicles and maintain the IoD network connectivity.

Algorithm 1 IPSO Algorithm for IoDAV
1: Input
2: Trail: Maximum Limit of trail
3: MaxIt: maximum iteration
4: PSize: Population Size
5: Bmin,Bmax: Environment Boundary
6: Output: Best Positions and fitness of IoD nodes (GBest)

7: INITIALIZATION:
8: initialize c1,c2
9: for each (i ∈ PopSize) do

10: initialize position [Posi] with logistic map using Eq1
11: Vi = 0
12: Fitnessi = Obj_Fun(Posi)
13: if Fitnessi.Cov>GBest.Cov then
14: GBest = Fitnessi
15: end if
16: if (Fitnessi.Cov==GBest.Cov) ∧

(Fitnessi.RSSI>GBest.RSSI) then
17: GBest = Fitnessi
18: end if
19: end for
20: repeat
21: iter=0
22: while Iter<Max_Iteration do
23: Update ω by Eq4
24: Update ε by Eq5
25: for each (i ∈ PopSize) do
26: Update the velocity Vi(t + 1) using Eq2
27: Update the position Posi(t + 1) using Eq3
28: Fitnessi = Obj_Fun(Posi(t + 1))
29: if Fitnessi.Cov > LBest.Cov then
30: LBest= Fitnessi
31: if LBest.Cov>GBest.Cov then
32: GBest =LBest
33: end if
34: if (LBest .Cov==GBest.Cov) ∧

(LBest.RSSI>GBest.RSSI) then
35: GBest=LBest
36: end if
37: Clear trail of generated Particle
38: else
39: Increment Particle trail (trail(i))
40: end if
41: end for
42: for each (i ∈ PopSize) do
43: if trail(i)>limit then
44: Replace inactive particle by new fresh one.
45: Clear its trail
46: end if
47: end for
48: Increment Iter
49: end while
50: until Ideal best is obtained or run out of time
51: return (GBest)
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FIGURE 2. IoD-assisted VANET framework in OMNET++ network
simulator.

The objective function of IPSO is composes of two parts:
the first part,i.e objective, includes the quality of the received
signal at the receiver side, i.e vehicles on the ground, which is
obtained by path loss propagation model and the coverage of
ground vehicles, while the second part, i.e objective, main-
tains the connectivity of IoD nodes. The aim is to achieve
those two objectives. The output of IPSO is the optimal
positions of IoD nodes that maximize the number of covered
vehicles by the interconnected IoD network.

VII. SIMULATION RESULTS AND ANALYSIS
In this section, we show the effectiveness of the pro-
posed IoDAV approach for achieving the optimal cover-
age in the dynamic environment. Throughout the obtained
results, the influence of the IoD size and transmission power
on the coverage and received signal strength are discussed.
Moreover, the IoDAV is compared with standard VANET
without IoD assisted, i.e NIoD, and FIoD, to show why the
VANET needs IoD rather than BS. Considering the aiming
of the proposed scheme to improve the VANET connectivity,
the performance metrics adopted in the simulation are the
average coverage and average RSSI. Without loss of general-
ity, the coverage is normalized to unity.

A. PARAMETERS SETTING
The simulation parameters used throughout this work are
abstracted in Table 1. This work considers the Two-ray
Ground Reflection propagation loss model provided by
OMNET++ with α value of 2. In this propagation model,
the ground reflection path, as well as the direct path, are taken
into consideration for calculating the received power. So,
an accurate calculation is given for the received power in this
model. The approved amendment to the IEEE 802.11 stan-
dard (802.11p) implemented in Veins to add wireless access
in vehicular environments (WAVE) is utilized. The setting
parameters of the drone’s communication network based on
OMNET++ simulation tool are set as follows: The geo-
graphical range is 4000m x 4000m. The simulation area
is generated by the SUMO NetEdit tool and the vehicle
movement is generated by the SUMO simulator. Moreover,
the UDP packet is a Basic Safety Message (BSM) with a

TABLE 1. Parameters setting.

size of 1.4KB. The frequency band used is 5.9 GHz. The
drones fly at 100m altitude. The simulation time is set to
400s, after which most of the vehicles in the ground reach
their destinations, to test the behavior of themodel.Moreover,
the minimum threshold is defined to be−86dBm (the thresh-
old for successful packet delivery). Each point in the fig-
ures represents the average of 10 replications of simulation.
We implement two scenarios: sparse scenario (300 vehicles)
and dense scenario (150 vehicles).

B. IMPACT OF IoD SIZE ON VANET CONNECTIVITY AND
RSSI
The IoD nodes have been deployed to provide wireless cov-
erage to ground vehicles. The coverage is a percentage of
connected vehicles and can be calculated by VC /V, where VC
is the connected vehicles, and V is the total vehicles on the
ground. It can be replaced by isolated vehicles which is equal
to 1-VC/V . In this subsection, we will discuss the normalized
coverage with respect to different IoD sizes in both sparse and
dense scenarios.

The IoD size (different sets of UAVs in IoD) implemented
are (2, 4, 6, 8, 10, 12, 14, 16, 18, and 20 UAVs) with trans-
mission power of 50mW. The simulation result is illustrated
in Fig.3.

We can observe from the figure that the IoD enhances the
connectivity of the VANET network. This trend increases as
the number of drones increases with the same transmission
power used, demonstrating the size effect of the IoD network
on coverage. However, increasing the IoD size might increase
the interference and the probability of collision with adja-
cent drones. Besides, when the drones are too close to each
other, they become redundant drones and play the same role.
Thus, sufficient distances within their communication ranges
should be maintained which is considered in the IoDAV
approach. Furthermore, sufficient isolated vehicles appear
due to their imbalance distribution and frequent movement.

In the dense scenario, the vehicles are close to each other
and most vehicles can directly communicate within their
communication range, demonstrating that the number of iso-
lated vehicles appears with a low number and requires fewer
IoD nodes to provide the connectivity among them, while in
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FIGURE 3. The average normalized coverage and RSSI for different IoD sizes in the IoDAV approach.

FIGURE 4. The average normalized coverage for different transmission power values with respect to different IoD sizes in the IoDAV scheme.

the sparse scenario, the vehicles are far from each other and
number of isolated nodes appears with a high number and
requires a higher number of IoD nodes for connecting them.
This fact can be easily figured out by considering Fig.3. It can
be seen that the maximum coverage is almost reached using
10 drones in the dense scenario and 16 drones in the sparse
scenario.

To further evaluate the performance of the proposed IoDAV
approach, we also discuss the impact of IoD size on RSSI

at the receiver side, which is considered as an indicator of
key performance. Particularly, RSSI is measured with respect
to the simulation time and the average RSSI result is shown
in Fig.3b. The figure illustrates the average received signal
quality at different receiver vehicles. It turns out that the
quality of the received signal is lower in the beginning when
only two UAVs are available, and it is improved as the IoD
size increases. This advantage tends to grow higher in the
dense scenario than in the sparse ones.
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FIGURE 5. The average normalized coverage for different transmission power values with respect to a set of UAVs in the FIoD scheme.

FIGURE 6. Average normalized coverage for different transmission power values in IoDAV, FIoD, and NIoD schemes.

C. IMPACT OF TRANSMITTED POWER ON COVERAGE
To further investigate the effectiveness of proposed IoDAV
model, the impact of transmitter power on the total coverage
is discussed, and the results of both scenarios are depicted
in Fig.4a and Fig.4b, respectively.

The figures present the normalized coverage versus IoD
size with different transmission power (20, 30, 40, and
50mW) for both sparse and dense scenarios, respectively.
As such, the impact of transmitter power on coverage is exam-
ined where coverage is observed to improve continuously
with increased transmission power as expected.

It is clear from the figure that the higher the transmitting
power, the wider the range, which leads to covering a larger
number of vehicles, that, in turn, improves the overall cover-
age. This tendency is evident in both scenarios. In the sparse
scenario, we notice that the highest normalized coverage is
provided by using 20 drones with the transmission power
of 20mW, 30mW and 40mW, reaches almost to 70%, 80%,
and 93%, respectively, while it reaches to 100% in dense
scenario using only 16 drones with a transmission power
of 50mW. We also note that 10 drones are sufficient to cover
all isolated vehicles using a transmission power of 50mW in
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FIGURE 7. Average normalized coverage for different sets of UAVs in IoDAV, FIoD, and NIoD schemes.

FIGURE 8. Box-plot of average normalized coverage in all scenarios for
10 UAVs in IoDAV, FIoD, and NIoD schemes.

the dense scenario, while the highest coverage achieved using
the transmission power of 20mW, 30mW and 40mW reaches
almost to 94%, 95% and 95.9% respectively.

For furthe investigating the effect of the transmitter power
on improving coverage and reducing the number of drones
required, we study the effect of the transmitter power in
the FIoD model and the results are shown in Fig.5a, and
Fig.5b. The same tendency as in the IoDAV approach, but
the improvement in FIoD is not significant as in IoDAV.
The maximum normalized coverage that can be achieved is
80% and 94% in the sparse and dense scenarios, respectively.
Comparison will be discussed in the forthcoming subsection.
To sum up, transmission power has a vital impact on improv-
ing the overall coverage as well as reducing the number of
necessary drones.

D. COMPARISON WITH OTHER SCHEMES
We compare the proposed IoDAV approach against VANET
without drone, i.e NIoD and with FIoD. Furthermore, the per-
formance metric which is the normalized overall coverage
and RSSI are considered in the comparison.

To investigate the performance of the proposed IoDAV,
we study the normalized overall coverage with respect to
transmission power for 10 drones (sufficient number of
drones to cover all vehicles by IoDAV in the dense scenario).

The results of the comparison are exhibited in Fig.6a and
Fig.6b for sparse and dense scenarios, respectively. It can be
easily shown that IoDAV achieves better coverage than other
schemes. This is because, in the NIoD scheme, there is no
infrastructure used to connect the isolated vehicles. Addition-
ally, in FIoD, the drones are deployed only once and the
movement of vehicles on the ground is neglected. Whereas
the proposed IoDAV approach considers the vehicle’s current
position every 10 seconds to obtain the positions of IoD
nodes. Thus, the UAVs in IoDAV adjust their locations based
on the new locations of ground vehicles that allows the IoD
nodes to follow the vehicles’ movements on the ground and
redeploys them accordingly. Besides, the IoDAV tries to keep
the RSSI above the threshold value which is −86dBm and
then number of covered vehicles is increased. Consequently,
it provides a longer connectivity time.

We also compare the normalized coverage for a different
set of UAVs (IoD size), and the results are shown in Fig.7a
and Fig.7b for sparse and dense scenarios, respectively. It can
be noticed that the coverage increases as IoD size increases
with the same transmission power used, demonstrating the
impact of IoD size on coverage. In the figure, the proposed
IoDAV approach achieves better average coverage than other
schemes with overall coverage improvements of 48.79% over
NIoD and 36.6% over FIoD in the sparse scenario, while
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FIGURE 9. Average RSSI at the receiver for different sets of UAVs in IoDAV and FIoD schemes.

for the dense scenario the improvement is 12.9% over NIoD
and 4.2% over FIoD. This means that in the dense scenario,
the number of isolated vehicles is lower than that in the sparse
scenario.

The experiment distribution results can be observed
throughout the Box-plot in Fig.8. As figure 8 illustrates,
IoDAV plot-box indicators are higher than other schemes.
The highest coverage achieved by IoDAV is 100% which
represents superior to the upper bound of the other schemes.
It also shows that NIoD and FIoD in the worst case are
inefficient since the coverage is lower than 30% and 51%,
respectively, but still not higher than IoDAV. Moreover, half
of IoDAV is higher than 90% which is higher than other
schemes. It turns out that Box-plot shows the superiority of
IoDAV to other approaches. IoDAV has great superiority in
all indicators compared with other competitors.

To further investigate the performance of the proposed
IoDAV deployment model, we discuss the impact of IoD
size on RSSI at the receiver side, which is considered an
indicator of key performance. Particularly, RSSI is measured
with respect to the simulation time and the average RSSI for
both FIoD and IoDAV are presented in Fig.9a, and Fig.9b for
sparse and dense scenarios, respectively.

As discussed above, the positions of UAVs in FIoD are
fixed, i.e UAVs are hovering in their deploying places dur-
ing the whole mission time, and neglect the movements of
vehicles on the ground. Furthermore, the vehicles aremoving,
which implies that there are non-uniform densities of cars at a
different time in the given region. Therefore, the whole region
can’t be covered with the available number of fixed drones
and thus all vehicles cannot be covered. As a result, the fixed
UAVs become far from ground vehicles as they move which
in turn reduces the RSSI while the dynamic IoD or IoDAV can
cope with the updating of vehicles locations and then tries to

keep the RSSI above threshold value which is −86dBm as
exhibited in the figure. It turns out that the proposed IoDAV
has the most consistent result.

VIII. CONCLUSION
In this work, we developed a novel dynamic collaborative
IoDAV model in which UAVs connect isolated vehicles on
the ground with each other. We proposed an optimization
approach, an improved version of particle swarm optimiza-
tion, to optimally deploy IoD to provide communication
among vehicles on the ground. Depending on the vehicles’
locations at any instant, IoD nodes were deployed to provide
optimal connectivity for the isolated vehicles. Furthermore,
the signal quality received at the car’s receiver was utilized to
assess the best IoD location to maximize connectivity. The
RSSI was obtained via simulation by using the Two Ray
Ground Reflection model. Two scenarios were considered
in this paper: sparse and dense scenarios. More importantly,
the results were compared with the standard VANET and
FIoDmodels. The results illustrated that the proposed IoDAV
approach outperformed other schemes. This is because the
dynamic model used in IoDAV could cope with a dynamic
environment of ground vehicles and achieved better coverage
than both standard VANET and FIoD models during the
whole simulation time.

In future work, we intend to study the influence of other
propagation models such as Nakagami Fading.
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