637,258 research outputs found

    The S-Matrix in Twistor Space

    Get PDF
    The simplicity and hidden symmetries of (Super) Yang-Mills and (Super)Gravity scattering amplitudes suggest the existence of a "weak-weak" dual formulation in which these structures are made manifest at the expense of manifest locality. We suggest that this dual description lives in (2,2) signature and is naturally formulated in twistor space. We recast the BCFW recursion relations in an on-shell form that begs to be transformed into twistor space. Our twistor transformation is inspired by Witten's, but differs in treating twistor and dual twistor variables more equally. In these variables the three and four-point amplitudes are amazingly simple; the BCFW relations are represented by diagrammatic rules that precisely define the "twistor diagrams" of Andrew Hodges. The "Hodges diagrams" for Yang-Mills theory are disks and not trees; they reveal striking connections between amplitudes and suggest a new form for them in momentum space. We also obtain a twistorial formulation of gravity. All tree amplitudes can be combined into an "S-Matrix" functional which is the natural holographic observable in asymptotically flat space; the BCFW formula turns into a quadratic equation for this "S-Matrix", providing a holographic description of N=4 SYM and N=8 Supergravity at tree level. We explore loop amplitudes in (2,2) signature and twistor space, beginning with a discussion of IR behavior. We find that the natural pole prescription renders the amplitudes well-defined and free of IR divergences. Loop amplitudes vanish for generic momenta, and in twistor space are even simpler than their tree-level counterparts! This further supports the idea that there exists a sharply defined object corresponding to the S-Matrix in (2,2) signature, computed by a dual theory naturally living in twistor space.Comment: V1: 46 pages + 23 figures. Less telegraphic abstract in the body of the paper. V2: 49 pages + 24 figures. Largely expanded set of references included. Some diagrammatic clarifications added, minor typo fixe

    On the factorization of a class of Wiener-Hopf kernels

    Get PDF
    This is a pre-copy-editing, author-produced PDF of an article accepted for publication in IMA Journal of Applied Mathematics following peer review. The definitive publisher-authenticated version: Abrahams, I.D. & Lawrie, J.B. (1995) “On the factorisation of a class of Wiener-Hopf kernels.” I.M.A. J. Appl. Math., 55, 35-47. is available online at: http://imamat.oxfordjournals.org/cgi/content/abstract/55/1/35.The Wiener-Hopf technique is a powerful aid for solving a wide range of problems in mathematical physics. The key step in its application is the factorization of the Wiener-Hopf kernel into the product of two functions which have different regions of analyticity. The traditional approach to obtaining these factors gives formulae which are not particularly easy to compute. In this article a novel approach is used to derive an elegant form for the product factors of a specific class of Wiener-Hopf kernels. The method utilizes the known solution to a difference equation and the main advantage of this approach is that, without recourse to the Cauchy integral, the product factors are expressed in terms of simple, finite range integrals which are easy to compute

    Subconvexity bounds for triple L-functions and representation theory

    Get PDF
    We describe a new method to estimate the trilinear period on automorphic representations of PGL(2,R). Such a period gives rise to a special value of the triple L-function. We prove a bound for the triple period which amounts to a subconvexity bound for the corresponding special value of the triple L-function. Our method is based on the study of the analytic structure of the corresponding unique trilinear functional on unitary representations of PGL(2,R).Comment: Revised version. To appear in Annals of Math
    corecore