1,217 research outputs found

    Hydrogen effect modeling on Ziegler-Natta catalyst and final product properties in propylene polymerization

    Get PDF
    Hydrogen, as chain transfer agent, effects on kinetic of propylene polymerization; consequently variation of hydrogen concentration leads to change final product properties and also activates site of used catalyst. This phenomenon is one of the most important process variables is to adjust the final product properties and optimize the operating conditions. This work has attempted to present a mathematical model that cable to calculate the most important indices of end used product, such as melt flow index, number and weight average molecular weight and poly dispersity index. The model can predict profile polymerization rates determining important kinetic parameters such as the activation energy, lumped deactivation reaction initial reaction rate and deactivation constant. The mathematical model was implemented in Matlab/Simulink environment for slurry polymerization in laboratory scale. The modeling approach is based on polymer moment balance method in the slurry semi-batch reactor. In addition, in this work have provided a model that calculating fraction activated sites catalyst via hydrogen concentration. The model was validated by experimental data from lab scale, reactor. The experimental and model outputs were compared; consequently, the errors were within acceptable range.               KEY WORDS: Mathematical modeling, Propylene polymerization, Kinetics study, Hydrogen response, population balance Bull. Chem. Soc. Ethiop. 2018, 32(2), 371-386.DOI: https://dx.doi.org/10.4314/bcse.v32i2.1

    Gas-phase ethylene polymerization studies using a magnesium chloride-supported Ziegler-Natta catalyst.

    Get PDF
    Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, 2006The gas phase polyethylene production process is the most recently developed and boasts man

    Dynamic modeling and parameter estimation for an ethlyene-propylene-diene polymerization process

    Get PDF
    New Page 1 A general dynamic model for continuous EPDM polymerization in which crosslinking and gel formation are attributable to reactions between pendant double bonds has been developed. A pseudo-kinetic rate constant method is introduced to construct a moment model for a pseudo-homopolymer that approximates the behavior of the actual terpolymer under long chain and quasi-steady state assumptions. The pseudo-homopolymer model is then used as the basis for application of the numerical fractionation method. The proposed dynamic model is capable of predicting polydispersities and molecular weight distributions near the gel point with as few as eleven generations, and in the post-gel region with as few as five. The overall molecular weight distribution (MWD) of the sol was constructed by assuming a Schulz two parameter distribution for each generation. A parameter selection procedure is proposed to determine the kinetic parameters that can be estimated from the limited plant data. The procedure is based on the steady-state parameter output sensitivity matrix. The overall effect of each parameter on the measured outputs is determined using Principal Component Analysis (PCA). The angles between the sensitivity vectors are used as a measure of collinearity between parameters. A simple algorithm which provides a tradeoff between overall parameter effect on key outputs and collinearity yields a ranking of parameters by ease of estimation, independent of the available data. Its nonlinear and dynamic extensions are also developed and tested to address the nonlinearity and dynamics of the parameters\u27 effects on the outputs. The key kinetic parameters determined by the parameter selection procedure were estimated from steady-state data extracted from dynamic plant data, using a newly developed steady state detection tool. A hierarchical extended Kalman filter (EKF) design is proposed to estimate unmeasured state variables and key kinetic parameters of the EPDM kinetic model. The estimator design is based on decomposing the dynamic model into two subsystems, by exploiting the triangular model structure and the different sampling frequencies of the on-line and laboratory measurements directly related to the state variables of each subsystem. Simulation tests show that the hierarchical EKF generates satisfactory predictions even in the presence of measurement noise and plant/model mismatch

    Development of a computationally efficient model for the control of Ziegler-Natta catalysed industrial production of high density polyethylene

    Get PDF
    High density polyethylene is commonly produced by the slurry phase co-polymerisation of ethylene and other alkenes, using heterogeneous titanium-based Ziegler-Natta catalysts. During grade transitions, when reactor conditions are manipulated to change polymer properties, significant quantities of off-specification product result. Implementing a model-predictive controller based on a dynamic reactor model may allow for minimising losses during unsteady-state operation. Such a model must be developed from a fundamental understanding of polymerisation reaction kinetics and the interaction of effects at various scales, including those of catalyst sites, catalyst/polymer particles and reactor hydrodynamics. The model must also be computationally efficient enough for application to real-time control. The recently-developed pseudo-sites model was used as a fundamental kinetic explanation of polymer property distributions and catalyst activity profiles, in contrast to empirical multi-site models. Laboratory polymerisation experiments were performed at industrially-relevant conditions. Kinetic parameters were fitted to the data, using a novel proposed regression procedure to extract meaningful kinetic parameters. A dynamic reactor model was developed, based on the Segregation Approach. Whereas the more common Population Balance Model must consider multivariate distributions of population members within a chosen volume and requires partial differential equation solution, the Segregation Approach can generate the moments of a distribution by evaluating the evolution of properties without requiring solution over the whole volume. The Segregation Approach and PBM were rigorously compared in the context of Particle Size Distributions, and the Segregation Approach shown to be an order of magnitude more computationally efficient. Steady-state industrial data was used to reconcile model predictions for laboratory and industrial polymerisation. This was the first application of the pseudo-sites model to laboratory data, and first extension to industrial scale. Unsteady-state data from three industrial grade transitions was used to validate the reactor model, which closely matched industrial reactor performance. The model simulated 30-40 hours of real time in 15-25 seconds of calculation time. The reactor model was used to propose improved grade transition strategies; transition duration and waste production were improved by 20-40%. The reactor model has been shown to accurately reproduce real-world results, and is computationally efficient enough to be applied to model-based control applications

    A New Rheological Polymer Based on Boron Siloxane Cross-Linked by Isocyanate Groups

    Get PDF
    The research described in this thesis originated from an idea to develop new body protection for the sport of fencing. The ultimate goal is to develop body armour which would be flexible, wearable, washable, light and breathable, offer protection from injuries and cover the entire body of a sportsman. A new material which exhibits shear thickening behaviour has been specially developed for this purpose in the process of this investigation. The material was designed and synthesised as a soft polymeric system which is flexible, chemically stable and able to increase the value of its modulus of elasticity upon impact at a high strain rate, while remaining in its soft gel-like elastomeric state when low strain rate deformation is applied. The polymeric system that has been developed is based on interpenetrating polymeric networks (IPN) of immiscible polyurethane/urea-ester/ether and poly(boron)n(dimethylsiloxane)m (where on average m ≈ 16 n). In addition, as the polydimethylsilane (PDMS) based polymeric system strongly tends to phase separation, the siloxane polymeric network was chemically cross-linked to the polyurethane polymeric network through polyurethane chemical cross-link-bridges. In order to introduce polyurethane cross-links to a siloxane-based polymeric network, some of the attached methyl groups in the PDMS polymeric backbone were substituted by Δ-pentanol groups. The resulting polymeric system combines properties of an alternating copolymer with IPN. The actual substitution of the methyl groups of PDMS into alternating Δ-pentanol groups was performed by Grignard reaction of trifunctional chlorosilane monomers, magnesium and 1,5-dibromopentane. Chemical analytical techniques like FT-IR, 13C NMR and 1H NMR spectroscopy were used to reveal the chemical structure of the synthesised polymeric network. The mechanical and dynamical properties of the obtained polymeric system were analysed by dynamic mechanical analysis (DMA). This part of the investigation indicated that the novel polymeric system exhibited shear thickening behaviour, but only at a narrow diapason of deformations (i.e., deformations between 2 to 3 % of the length of the sample). At this limited diapason of deformation an effective increase of the modulus of elasticity from 6 MPa (at lower frequencies, i.e., up to ≀6 Hz of the applied oscillating stress) to 65 MPa (at frequencies between 12.5 to 25 Hz) was obtained. However, no increase in the modulus of elasticity was recorded at deformations below 1.5 % or above 3.5 % of length of the sample at the same frequencies (0 to 25Hz) of the applied oscillating stress

    SadrĆŸaj i autorski indeks 2019.

    Get PDF
    • 

    corecore