5 research outputs found

    Low power energy harvesting and storage techniques from ambient human powered energy sources

    Get PDF
    Conventional electrochemical batteries power most of the portable and wireless electronic devices that are operated by electric power. In the past few years, electrochemical batteries and energy storage devices have improved significantly. However, this progress has not been able to keep up with the development of microprocessors, memory storage, and sensors of electronic applications. Battery weight, lifespan and reliability often limit the abilities and the range of such applications of battery powered devices. These conventional devices were designed to be powered with batteries as required, but did not allow scavenging of ambient energy as a power source. In contrast, development in wireless technology and other electronic components are constantly reducing the power and energy needed by many applications. If energy requirements of electronic components decline reasonably, then ambient energy scavenging and conversion could become a viable source of power for many applications. Ambient energy sources can be then considered and used to replace batteries in some electronic applications, to minimize product maintenance and operating cost. The potential ability to satisfy overall power and energy requirements of an application using ambient energy can eliminate some constraints related to conventional power supplies. Also power scavenging may enable electronic devices to be completely self-sustaining so that battery maintenance can eventually be eliminated. Furthermore, ambient energy scavenging could extend the performance and the lifetime of the MEMS (Micro electromechanical systems) and portable electronic devices. These possibilities show that it is important to examine the effectiveness of ambient energy as a source of power. Until recently, only little use has been made of ambient energy resources, especially for wireless networks and portable power devices. Recently, researchers have performed several studies in alternative energy sources that could provide small amounts of electricity to low-power electronic devices. These studies were focused to investigate and obtain power from different energy sources, such as vibration, light, sound, airflow, heat, waste mechanical energy and temperature variations. This research studied forms of ambient energy sources such as waste mechanical (rotational) energy from hydraulic door closers, and fitness exercise bicycles, and its conversion and storage into usable electrical energy. In both of these examples of applications, hydraulic door closers and fitness exercise bicycles, human presence is required. A person has to open the door in order for the hydraulic door closer mechanism to function. Fitness exercise bicycles need somebody to cycle the pedals to generate electricity (while burning calories.) Also vibrations, body motions, and compressions from human interactions were studied using small piezoelectric fiber composites which are capable of recovering waste mechanical energy and converting it to useful electrical energy. Based on ambient energy sources, electrical energy conversion and storage circuits were designed and tested for low power electronic applications. These sources were characterized according to energy harvesting (scavenging) methods, and power and energy density. At the end of the study, the ambient energy sources were matched with possible electronic applications as a viable energy source

    Module autonome pour l’évaluation du potentiel photovoltaïque en intérieur

    Get PDF
    L’alimentation de dispositifs électroniques à faible consommation énergétique est un sujet qui connait beaucoup d’intérêt. Dans le contexte de la mise en place de l’Internet des objets, un nombre important de capteurs sans fil de type Wireless sensor node (WSN) devront être installés. Ces derniers ne consommant que peu d’énergie, des solutions sont envisagées pour assurer leur alimentation autrement que par une pile. Il est ainsi intéressant d’utiliser les faibles énergies présentes dans un environnement pour les convertir en électricité. Ce principe se retrouve par exemple dans les capteurs piézoélectriques, utilisant les déformations mécaniques de leur environnement, ou dans les capteurs photovoltaïques, utilisant la lumière, afin de générer un signal électrique. Dans le cas des capteurs WSN utilisés en intérieur, la lumière artificielle combinée à un capteur photovoltaïque pourrait être est une source d’énergie adaptée. Ce principe se nomme Indoor Photovoltaic, ou plus généralement Energy Harvesting. Le courant produit par une cellule photovoltaïque utilisée en intérieur varie selon les types de cellules et d’éclairages utilisés, de l’éclairement lumineux et de sa position spatiale par rapport à la source lumineuse utilisée dans la pièce. Plusieurs montages issus de la littérature ont permis d’évaluer le courant généré selon ces paramètres. À notre connaissance, il n’existe cependant pas de dispositifs commerciaux compacts dédiés à la mesure de ces paramètres en conditions réelles. Un tel outil permettrait de réaliser une mesure du potentiel photovoltaïque en tout lieu. La connaissance précise de la quantité d’énergie disponible dans un environnement permettrait de mieux appréhender l’autonomie énergétique de ces capteurs sans fil. Le projet de recherche portera sur la conception d’un module de mesure compact et autonome, permettant d’évaluer les performances de plusieurs cellules photovoltaïques dans tous types d’environnements internes. Cet outil de mesure, couplé à une application mobile Android, offre la possibilité d’estimer la quantité d’énergie photovoltaïque disponible. Ce capteur intelligent permettra d’évaluer le potentiel d’utilisation et donc l’installation de capteurs sans fil de type WSN, autonomes en énergie, en intérieur

    The Machine that Lives Forever

    Get PDF
    Design an intelligent micromachine that can self-power and sustain from environmental energy scavenging to achieve an autonomous device that can communicate at will with peers indefinitely. Explore sleep/wake hibernation strategies coupled with food scavenging off-grid traits to identify the tightest work to sleep efficiency schedule, incorporating adaptive reconfiguration to manage significant environmental impacts. Capture, store and manage background radiations and stray RF signals to feed on in a continued effort to make intelligent survival decisions and oversee management protocols. Ensure that every micro Watt of usable energy gets extracted from every part of the harvest and then forward-scheduled it for productive use. Finally, employ natures tricks and experience to introduce essential personality traits, pursuing maximising survival numbers and increasing dispersal target area sizes of large self-sufficient wireless sensor deployments. This research intends to provide a closely coupled software-hardware foundation that aids implementers in intelligently harnessing and using tiny amounts of ambient energy in a highly autonomous way. This platform then continues on to explore ways of maximising the efficient usage of the harvested energy using various hibernation/wake strategies and then making objective comparisons with proposed intelligent energy management protocols. Finally, the protocol extends to enable the device to manage its personal survival possibilities so the devices can use an evolutional personality-based approach to deal with the unknown environmental situations they will encounter. This work examines a machine that can self-power and sustain from environmental energy scavenging with the aim to live forever. Living forever implies a brain (microcontroller) that can manage energy and budget for continuous faculty. With these objectives, sleep/wake/hibernation and scavenging strategies are examined to efficiently schedule resources within a transient environment. Example harvesting includes induced and background radiation. Intelligent, biologically-inspired strategies are adopted in forward-scheduling strategies given temporal energy relative to the machine’s function (the Walton)
    corecore