244 research outputs found

    Orbitopal Fixing

    Get PDF
    The topic of this paper are integer programming models in which a subset of 0/1-variables encode a partitioning of a set of objects into disjoint subsets. Such models can be surprisingly hard to solve by branch-and-cut algorithms if the order of the subsets of the partition is irrelevant, since this kind of symmetry unnecessarily blows up the search tree. We present a general tool, called orbitopal fixing, for enhancing the capabilities of branch-and-cut algorithms in solving such symmetric integer programming models. We devise a linear time algorithm that, applied at each node of the search tree, removes redundant parts of the tree produced by the above mentioned symmetry. The method relies on certain polyhedra, called orbitopes, which have been introduced bei Kaibel and Pfetsch (Math. Programm. A, 114 (2008), 1-36). It does, however, not explicitly add inequalities to the model. Instead, it uses certain fixing rules for variables. We demonstrate the computational power of orbitopal fixing at the example of a graph partitioning problem.Comment: 22 pages, revised and extended version of a previous version that has appeared under the same title in Proc. IPCO 200

    Matroidal Degree-Bounded Minimum Spanning Trees

    Full text link
    We consider the minimum spanning tree (MST) problem under the restriction that for every vertex v, the edges of the tree that are adjacent to v satisfy a given family of constraints. A famous example thereof is the classical degree-constrained MST problem, where for every vertex v, a simple upper bound on the degree is imposed. Iterative rounding/relaxation algorithms became the tool of choice for degree-bounded network design problems. A cornerstone for this development was the work of Singh and Lau, who showed for the degree-bounded MST problem how to find a spanning tree violating each degree bound by at most one unit and with cost at most the cost of an optimal solution that respects the degree bounds. However, current iterative rounding approaches face several limits when dealing with more general degree constraints. In particular, when several constraints are imposed on the edges adjacent to a vertex v, as for example when a partition of the edges adjacent to v is given and only a fixed number of elements can be chosen out of each set of the partition, current approaches might violate each of the constraints by a constant, instead of violating all constraints together by at most a constant number of edges. Furthermore, it is also not clear how previous iterative rounding approaches can be used for degree constraints where some edges are in a super-constant number of constraints. We extend iterative rounding/relaxation approaches both on a conceptual level as well as aspects involving their analysis to address these limitations. This leads to an efficient algorithm for the degree-constrained MST problem where for every vertex v, the edges adjacent to v have to be independent in a given matroid. The algorithm returns a spanning tree T of cost at most OPT, such that for every vertex v, it suffices to remove at most 8 edges from T to satisfy the matroidal degree constraint at v

    Global Cardinality Constraints Make Approximating Some Max-2-CSPs Harder

    Get PDF
    Assuming the Unique Games Conjecture, we show that existing approximation algorithms for some Boolean Max-2-CSPs with cardinality constraints are optimal. In particular, we prove that Max-Cut with cardinality constraints is UG-hard to approximate within ~~0.858, and that Max-2-Sat with cardinality constraints is UG-hard to approximate within ~~0.929. In both cases, the previous best hardness results were the same as the hardness of the corresponding unconstrained Max-2-CSP (~~0.878 for Max-Cut, and ~~0.940 for Max-2-Sat). The hardness for Max-2-Sat applies to monotone Max-2-Sat instances, meaning that we also obtain tight inapproximability for the Max-k-Vertex-Cover problem

    Exponential Lower Bounds for Polytopes in Combinatorial Optimization

    Get PDF
    We solve a 20-year old problem posed by Yannakakis and prove that there exists no polynomial-size linear program (LP) whose associated polytope projects to the traveling salesman polytope, even if the LP is not required to be symmetric. Moreover, we prove that this holds also for the cut polytope and the stable set polytope. These results were discovered through a new connection that we make between one-way quantum communication protocols and semidefinite programming reformulations of LPs.Comment: 19 pages, 4 figures. This version of the paper will appear in the Journal of the ACM. The earlier conference version in STOC'12 had the title "Linear vs. Semidefinite Extended Formulations: Exponential Separation and Strong Lower Bounds

    On-Line End-to-End Congestion Control

    Full text link
    Congestion control in the current Internet is accomplished mainly by TCP/IP. To understand the macroscopic network behavior that results from TCP/IP and similar end-to-end protocols, one main analytic technique is to show that the the protocol maximizes some global objective function of the network traffic. Here we analyze a particular end-to-end, MIMD (multiplicative-increase, multiplicative-decrease) protocol. We show that if all users of the network use the protocol, and all connections last for at least logarithmically many rounds, then the total weighted throughput (value of all packets received) is near the maximum possible. Our analysis includes round-trip-times, and (in contrast to most previous analyses) gives explicit convergence rates, allows connections to start and stop, and allows capacities to change.Comment: Proceedings IEEE Symp. Foundations of Computer Science, 200

    New Dependencies of Hierarchies in Polynomial Optimization

    Full text link
    We compare four key hierarchies for solving Constrained Polynomial Optimization Problems (CPOP): Sum of Squares (SOS), Sum of Diagonally Dominant Polynomials (SDSOS), Sum of Nonnegative Circuits (SONC), and the Sherali Adams (SA) hierarchies. We prove a collection of dependencies among these hierarchies both for general CPOPs and for optimization problems on the Boolean hypercube. Key results include for the general case that the SONC and SOS hierarchy are polynomially incomparable, while SDSOS is contained in SONC. A direct consequence is the non-existence of a Putinar-like Positivstellensatz for SDSOS. On the Boolean hypercube, we show as a main result that Schm\"udgen-like versions of the hierarchies SDSOS*, SONC*, and SA* are polynomially equivalent. Moreover, we show that SA* is contained in any Schm\"udgen-like hierarchy that provides a O(n) degree bound.Comment: 26 pages, 4 figure

    Two algorithms for the student-project allocation problem

    Get PDF
    We study the Student-Project Allocation problem (SPA), a generalisation of the classical Hospitals / Residents problem (HR). An instance of SPA involves a set of students, projects and lecturers. Each project is offered by a unique lecturer, and both projects and lecturers have capacity constraints. Students have preferences over projects, whilst lecturers have preferences over students. We present two optimal linear-time algorithms for allocating students to projects, subject to the preference and capacity constraints. In particular, each algorithm finds a stable matching of students to projects. Here, the concept of stability generalises the stability definition in the HR context. The stable matching produced by the first algorithm is simultaneously best-possible for all students, whilst the one produced by the second algorithm is simultaneously best-possible for all lecturers. We also prove some structural results concerning the set of stable matchings in a given instance of SPA. The SPA problem model that we consider is very general and has applications to a range of different contexts besides student-project allocation

    Collaborative Justice and Harm Reduction in Cyberspace: Policing Indecent Child Images

    Get PDF
    The exponential increase on the internet of indecent images of children (IIOC) has been followed by a transformation within criminal justice. The scale, nature and rapid technological evolution of such crimes—often of distant initial geographical origin—requires collaborative justice and harm reduction arrangements with internet companies and NGOs. The diminished reach (declining criminal justice interventions) and power (even in identifying crimes for intervention) of state authority with the current collaborative model, however, has resulted in inadequate social regulation and policing in response to IIOC crimes on the surface web. There is a considerable risk that the Online Harms White Paper proposals to establish overarching government authority to generally reduce harmful conduct will not fully resolve problems that go much wider than the technological, commercial and consumer protection on the surface web issues emphasised in that document. Only political choices about funding and fundamental rights compliant legislation can (a) prevent the hollowing out of criminal justice capacity and capabilities to deal with IIOC offenders and (b) ensure an essential compatibility and consistency in police operational ability—including the access sought to anonymised communication data via an encryption key—and legal principles when dealing with IIOC crimes across all levels of the internet, including ‘the dark web’. These issues are examined as a case study in civic epistemology about the influence of neoliberalism in technologically focused policy making

    Aligning IT To Business In Complex Multinational Corporations: The Case Of The U.N. Secretariat

    Get PDF
    Business-IT strategic alignment grows in importance as organizations strive to link business and technology in light of the internationalization of their businesses. This positivistic research method uses a field survey design to examine (a) the role of knowledge management processes in the relationship between contextual factors and alignment in the U.N. Secretariat, and (b) the role of IT projects in the relationship between alignment and the performance and effectiveness of the U.N. Secretariat. Structural equation modeling techniques are conducted to analyze data collected through a sample of 166 IT managers and 97 business managers from 50 offices in the U.N. Secretariat. The measurement model exhibited a fairly good fit. The results of the study have at least four implications to leaders in the U.N. Secretariat and in multinational corporations (MNCs). A theoretical and practical perspective of business-IT strategic alignment in the U.N. Secretariat is provided. The study draws upon the strategic alignment model and the typology of MNCs to propose and test an IT strategic alignment model for MNCs (mSAM). The business-IT strategic alignment implementation model for MNCs (mSAIM) is the model for application proposed as the critical recommendation of the research study
    • 

    corecore