11 research outputs found

    A Survey on the Integration of NAND Flash Storage in the Design of File Systems and the Host Storage Software Stack

    Get PDF
    With the ever-increasing amount of data generate in the world, estimated to reach over 200 Zettabytes by 2025, pressure on efficient data storage systems is intensifying. The shift from HDD to flash-based SSD provides one of the most fundamental shifts in storage technology, increasing performance capabilities significantly. However, flash storage comes with different characteristics than prior HDD storage technology. Therefore, storage software was unsuitable for leveraging the capabilities of flash storage. As a result, a plethora of storage applications have been design to better integrate with flash storage and align with flash characteristics. In this literature study we evaluate the effect the introduction of flash storage has had on the design of file systems, which providing one of the most essential mechanisms for managing persistent storage. We analyze the mechanisms for effectively managing flash storage, managing overheads of introduced design requirements, and leverage the capabilities of flash storage. Numerous methods have been adopted in file systems, however prominently revolve around similar design decisions, adhering to the flash hardware constrains, and limiting software intervention. Future design of storage software remains prominent with the constant growth in flash-based storage devices and interfaces, providing an increasing possibility to enhance flash integration in the host storage software stack

    A Survey on the Integration of NAND Flash Storage in the Design of File Systems and the Host Storage Software Stack

    Full text link
    With the ever-increasing amount of data generate in the world, estimated to reach over 200 Zettabytes by 2025, pressure on efficient data storage systems is intensifying. The shift from HDD to flash-based SSD provides one of the most fundamental shifts in storage technology, increasing performance capabilities significantly. However, flash storage comes with different characteristics than prior HDD storage technology. Therefore, storage software was unsuitable for leveraging the capabilities of flash storage. As a result, a plethora of storage applications have been design to better integrate with flash storage and align with flash characteristics. In this literature study we evaluate the effect the introduction of flash storage has had on the design of file systems, which providing one of the most essential mechanisms for managing persistent storage. We analyze the mechanisms for effectively managing flash storage, managing overheads of introduced design requirements, and leverage the capabilities of flash storage. Numerous methods have been adopted in file systems, however prominently revolve around similar design decisions, adhering to the flash hardware constrains, and limiting software intervention. Future design of storage software remains prominent with the constant growth in flash-based storage devices and interfaces, providing an increasing possibility to enhance flash integration in the host storage software stack

    Elevating commodity storage with the SALSA host translation layer

    Full text link
    To satisfy increasing storage demands in both capacity and performance, industry has turned to multiple storage technologies, including Flash SSDs and SMR disks. These devices employ a translation layer that conceals the idiosyncrasies of their mediums and enables random access. Device translation layers are, however, inherently constrained: resources on the drive are scarce, they cannot be adapted to application requirements, and lack visibility across multiple devices. As a result, performance and durability of many storage devices is severely degraded. In this paper, we present SALSA: a translation layer that executes on the host and allows unmodified applications to better utilize commodity storage. SALSA supports a wide range of single- and multi-device optimizations and, because is implemented in software, can adapt to specific workloads. We describe SALSA's design, and demonstrate its significant benefits using microbenchmarks and case studies based on three applications: MySQL, the Swift object store, and a video server.Comment: Presented at 2018 IEEE 26th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS

    Understanding and Optimizing Flash-based Key-value Systems in Data Centers

    Get PDF
    Flash-based key-value systems are widely deployed in today’s data centers for providing high-speed data processing services. These systems deploy flash-friendly data structures, such as slab and Log Structured Merge(LSM) tree, on flash-based Solid State Drives(SSDs) and provide efficient solutions in caching and storage scenarios. With the rapid evolution of data centers, there appear plenty of challenges and opportunities for future optimizations. In this dissertation, we focus on understanding and optimizing flash-based key-value systems from the perspective of workloads, software, and hardware as data centers evolve. We first propose an on-line compression scheme, called SlimCache, considering the unique characteristics of key-value workloads, to virtually enlarge the cache space, increase the hit ratio, and improve the cache performance. Furthermore, to appropriately configure increasingly complex modern key-value data systems, which can have more than 50 parameters with additional hardware and system settings, we quantitatively study and compare five multi-objective optimization methods for auto-tuning the performance of an LSM-tree based key-value store in terms of throughput, the 99th percentile tail latency, convergence time, real-time system throughput, and the iteration process, etc. Last but not least, we conduct an in-depth, comprehensive measurement work on flash-optimized key-value stores with recently emerging 3D XPoint SSDs. We reveal several unexpected bottlenecks in the current key-value store design and present three exemplary case studies to showcase the efficacy of removing these bottlenecks with simple methods on 3D XPoint SSDs. Our experimental results show that our proposed solutions significantly outperform traditional methods. Our study also contributes to providing system implications for auto-tuning the key-value system on flash-based SSDs and optimizing it on revolutionary 3D XPoint based SSDs

    Understanding and Improving the Performance of Read Operations Across the Storage Stack

    Get PDF
    We live in a data-driven era, large amounts of data are generated and collected every day. Storage systems are the backbone of this era, as they store and retrieve data. To cope with increasing data demands (e.g., diversity, scalability), storage systems are experiencing changes across the stack. As other computer systems, storage systems rely on layering and modularity, to allow rapid development. Unfortunately, this can hinder performance clarity and introduce degradations (e.g., tail latency), due to unexpected interactions between components of the stack. In this thesis, we first perform a study to understand the behavior across different layers of the storage stack. We focus on sequential read workloads, a common I/O pattern in distributed le systems (e.g., HDFS, GFS). We analyze the interaction between read workloads, local le systems (i.e., ext4), and storage media (i.e., SSDs). We perform the same experiment over different periods of time (e.g., le lifetime). We uncover 3 slowdowns, all of which occur in the lower layers. When combined, these slowdowns can degrade throughput by 30%. We find that increased parallelism on the local le system mitigates these slowdowns, showing the need for adaptability in storage stacks. Given the fact that performance instabilities can occur at any layer of the stack, it is important that upper-layer systems are able to react. We propose smart hedging, a novel technique to manage high-percentile (tail) latency variations in read operations. Smart hedging considers production challenges, such as massive scalability, heterogeneity, and ease of deployment and maintainability. Our technique establishes a dynamic threshold by tracking latencies on the client-side. If a read operation exceeds the threshold, a new hedged request is issued, in an exponential back-off manner. We implement our technique in HDFS and evaluate it on 70k servers in 3 datacenters. Our technique reduces average tail latency, without generating excessive system load

    Architectural Enhancements for Data Transport in Datacenter Systems

    Full text link
    Datacenter systems run myriad applications, which frequently communicate with each other and/or Input/Output (I/O) devices—including network adapters, storage devices, and accelerators. Due to the growing speed of I/O devices and the emergence of microservice-based programming models, the I/O software stacks have become a critical factor in end-to-end communication performance. As such, I/O software stacks have been evolving rapidly in recent years. Datacenters rely on fast, efficient “Software Data Planes”, which orchestrate data transfer between applications and I/O devices. The goal of this dissertation is to enhance the performance, efficiency, and scalability of software data planes by diagnosing their existing issues and addressing them through hardware-software solutions. In the first step, I characterize challenges of modern software data planes, which bypass the operating system kernel to avoid associated overheads. Since traditional interrupts and system calls cannot be delivered to user code without kernel assistance, kernel-bypass data planes use spinning cores on I/O queues to identify work/data arrival. Spin-polling obviously wastes CPU cycles on checking empty queues; however, I show that it entails even more drawbacks: (1) Full-tilt spinning cores perform more (useless) polling work when there is less work pending in the queues. (2) Spin-polling scales poorly with the number of polled queues due to processor cache capacity constraints, especially when traffic is unbalanced. (3) Spin-polling also scales poorly with the number of cores due to the overhead of polling and operation rate limits. (4) Whereas shared queues can mitigate load imbalance and head-of-line blocking, synchronization overheads of spinning on them limit their potential benefits. Next, I propose a notification accelerator, dubbed HyperPlane, which replaces spin-polling in software data planes. Design principles of HyperPlane are: (1) not iterating on empty I/O queues to find work/data in ready ones, (2) blocking/halting when all queues are empty rather than spinning fruitlessly, and (3) allowing multiple cores to efficiently monitor a shared set of queues. These principles lead to queue scalability, work proportionality, and enjoying theoretical merits of shared queues. HyperPlane is realized with a programming model front-end and a hardware microarchitecture back-end. Evaluation of HyperPlane shows its significant advantage in terms of throughput, average/tail latency, and energy efficiency over a state-of-the-art spin-polling-based software data plane, with very small power and area overheads. Finally, I focus on the data transfer aspect in software data planes. Cache misses incurred by accessing I/O data are a major bottleneck in software data planes. Despite considerable efforts put into delivering I/O data directly to the last-level cache, some access latency is still exposed. Cores cannot prefetch such data to nearer caches in today's systems because of the complex access pattern of data buffers and the lack of an appropriate notification mechanism that can trigger the prefetch operations. As such, I propose HyperData, a data transfer accelerator based on targeted prefetching. HyperData prefetches exact (rather than predicted) data buffers (or a required subset to avoid cache pollution) to the L1 cache of the consumer core at the right time. Prefetching can be done for both core-peripheral and core-core communications. HyperData's prefetcher is programmable and supports various queue formats—namely, direct (regular), indirect (Virtio), and multi-consumer queues. I show that with a minor overhead, HyperData effectively hides data access latency in software data planes, thereby improving both application- and system-level performance and efficiency.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169826/1/hosseing_1.pd
    corecore