4 research outputs found

    Building Multiple Classifier Systems Using Linear Combinations of Reduced Graphs.

    Get PDF
    Despite great efforts done in research in the last decades, the classification of general graphs, i.e., graphs with unconstrained labeling and structure, remains a challenging task. Due to the inherent relational structure of graphs it is difficult, or even impossible, to apply standard pattern recognition methods to graphs to achieve high recognition accuracies. Common methods to solve the non-trivial problem of graph classification employ graph matching in conjunction with a distance-based classifier or a kernel machine. In the present paper, we address the specific task of graph classification by means of a novel framework that uses information acquired from a broad range of reduced graph subspaces. Our novel approach can be roughly divided into three successive steps. In the first step, differently reduced graphs are created out of the original graphs relying on node centrality measures. In the second step, we compute the graph edit distance between each reduced graph and all the other graphs of the corresponding graph subspace. Finally, we linearly combine the distances in the third step and feed them into a distance-based classifier to obtain the final classification result. On six graph data sets, we empirically confirm that the proposed multiple classifier system directly benefits from the combined distances computed in the various graph subspaces

    Error-tolerant Graph Matching on Huge Graphs and Learning Strategies on the Edit Costs

    Get PDF
    Els grafs s贸n estructures de dades abstractes que s'utilitzen per a modelar problemes reals amb dues entitats b脿siques: nodes i arestes. Cada node o v猫rtex representa un punt d'inter猫s rellevant d'un problema, i cada aresta representa la relaci贸 entre aquests v猫rtexs. Els nodes i les arestes podrien incorporar atributs per augmentar la precisi贸 del problema modelat. Degut a aquesta versatilitat, s'han trobat moltes aplicacions en camps com la visi贸 per computador, biom猫dics, an脿lisi de xarxes, etc. La Dist脿ncia d'edici贸 de grafs (GED) s'ha convertit en una eina important en el reconeixement de patrons estructurals, ja que permet mesurar la dissimilitud dels grafs. A la primera part d'aquesta tesi es presenta un m猫tode per generar una parella grafs juntament amb la seva correspond猫ncia en un cost computacional lineal. A continuaci贸, se centra en com mesurar la dissimilitud entre dos grafs enormes (m茅s de 10.000 nodes), utilitzant un nou algoritme de aparellament de grafs anomenat Belief Propagation. T茅 un cost computacional O(d^3.5N). Aquesta tesi tamb茅 presenta un marc general per aprendre els costos d'edici贸 implicats en els c脿lculs de la GED autom脿ticament. Despr茅s, concretem aquest marc en dos models diferents basats en xarxes neuronals i funcions de densitat de probabilitat. S'ha realitzat una validaci贸 pr脿ctica exhaustiva en 14 bases de dades p煤bliques. Aquesta validaci贸 mostra que la precisi贸 茅s major amb els costos d'edici贸 apresos, que amb alguns costos impostos manualment o altres costos apresos autom脿ticament per m猫todes anteriors. Finalment proposem una aplicaci贸 de l'algoritme Belief propagation utilitzat en la simulaci贸 de la mec脿nica muscular.Los grafos son estructuras de datos abstractos que se utilizan para modelar problemas reales con dos entidades b谩sicas: nodos y aristas. Cada nodo o v茅rtice representa un punto de inter茅s relevante de un problema, y cada arista representa la relaci贸n entre estos v茅rtices. Los nodos y las aristas podr铆an incorporar atributos para aumentar la precisi贸n del problema modelado. Debido a esta versatilidad, se han encontrado muchas aplicaciones en campos como la visi贸n por computador, biom茅dicos, an谩lisis de redes, etc. La Distancia de edici贸n de grafos (GED) se ha convertido en una herramienta importante en el reconocimiento de patrones estructurales, ya que permite medir la disimilitud de los grafos. En la primera parte de esta tesis se presenta un m茅todo para generar una pareja grafos junto con su correspondencia en un coste computacional lineal. A continuaci贸n, se centra en c贸mo medir la disimilitud entre dos grafos enormes (m谩s de 10.000 nodos), utilizando un nuevo algoritmo de emparejamiento de grafos llamado Belief Propagation. Tiene un coste computacional O(d^3.5n). Esta tesis tambi茅n presenta un marco general para aprender los costos de edici贸n implicados en los c谩lculos de GED autom谩ticamente. Luego, concretamos este marco en dos modelos diferentes basados en redes neuronales y funciones de densidad de probabilidad. Se ha realizado una validaci贸n pr谩ctica exhaustiva en 14 bases de datos p煤blicas. Esta validaci贸n muestra que la precisi贸n es mayor con los costos de edici贸n aprendidos, que con algunos costos impuestos manualmente u otros costos aprendidos autom谩ticamente por m茅todos anteriores. Finalmente proponemos una aplicaci贸n del algoritmo Belief propagation utilizado en la simulaci贸n de la mec谩nica muscular.Graphs are abstract data structures used to model real problems with two basic entities: nodes and edges. Each node or vertex represents a relevant point of interest of a problem, and each edge represents the relationship between these points. Nodes and edges could be attributed to increase the accuracy of the modeled problem, which means that these attributes could vary from feature vectors to description labels. Due to this versatility, many applications have been found in fields such as computer vision, bio-medics, network analysis, etc. Graph Edit Distance (GED) has become an important tool in structural pattern recognition since it allows to measure the dissimilarity of attributed graphs. The first part presents a method is presented to generate graphs together with an upper and lower bound distance and a correspondence in a linear computational cost. Through this method, the behaviour of the known -or the new- sub-optimal Error-Tolerant graph matching algorithm can be tested against a lower and an upper bound GED on large graphs, even though we do not have the true distance. Next, the present is focused on how to measure the dissimilarity between two huge graphs (more than 10.000 nodes), using a new Error-Tolerant graph matching algorithm called Belief Propagation algorithm. It has a O(d^3.5n) computational cost.This thesis also presents a general framework to learn the edit costs involved in the GED calculations automatically. Then, we concretise this framework in two different models based on neural networks and probability density functions. An exhaustive practical validation on 14 public databases has been performed. This validation shows that the accuracy is higher with the learned edit costs, than with some manually imposed costs or other costs automatically learned by previous methods. Finally we propose an application of the Belief propagation algorithm applied to muscle mechanics
    corecore