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Abstract
Despite great efforts done in research in the last decades, the classification of general graphs, i.e., graphs with unconstrained 
labeling and structure, remains a challenging task. Due to the inherent relational structure of graphs it is difficult, or even 
impossible, to apply standard pattern recognition methods to graphs to achieve high recognition accuracies. Common methods 
to solve the non-trivial problem of graph classification employ graph matching in conjunction with a distance-based classifier 
or a kernel machine. In the present paper, we address the specific task of graph classification by means of a novel framework 
that uses information acquired from a broad range of reduced graph subspaces. Our novel approach can be roughly divided 
into three successive steps. In the first step, differently reduced graphs are created out of the original graphs relying on node 
centrality measures. In the second step, we compute the graph edit distance between each reduced graph and all the other 
graphs of the corresponding graph subspace. Finally, we linearly combine the distances in the third step and feed them into 
a distance-based classifier to obtain the final classification result. On six graph data sets, we empirically confirm that the 
proposed multiple classifier system directly benefits from the combined distances computed in the various graph subspaces.

Keywords Structural pattern recognition · Graph matching · Genetic algorithm · Multiple classifier systems

Introduction

A graph, in its generic formulation, is a universal represen-
tational formalism that consists of a finite set of basic enti-
ties (termed nodes), in addition to a set of edges that might 
exist between pairs of nodes. The flexibility and expressive-
ness of graphs lies, on one hand, in the set-theoretic defi-
nition of nodes and, on the other hand—and maybe more 
importantly—in the possibility of modeling relationships 
via edges.

Due to their great generality and flexibility, graphs can be 
used to learn and study data from a broad variety of applica-
tions (in particular in pattern recognition and related fields 
[1]). Prominent examples of classes of objects, which can be 
formally represented in a suitable and natural way by means 
of graphs, are molecular compounds [2], protein structures 
[3], binary executables [4], or networks [5], to name just a 
few examples (see [6] for more examples that emphasize the 
universality of this specific data structure).

When the underlying data in a pattern recognition sce-
nario consists of both features along with relationships that 
might exist between different subparts of the data, we con-
sider this to be structural pattern recognition. Such data are 
best formalized by means of graphs or trees. This is in stark 
contrast to statistical pattern recognition that employs quan-
titative features that are encoded in n-dimensional feature 
vectors. Both approaches share common roots that consists 
of extracting efficient representations out of a given set of 
data and mapping the extracted representations to one of 
the possible classes. Unfortunately, the inherent relational 
structure of graphs makes it impossible to directly translate 
the methods, formerly proposed for statistical data, to graph 
or tree data.
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A popular strategy to tackle this issue is to map graphs 
into an implicit or explicit embedding space and eventually 
apply statistical pattern recognition algorithms to the embed-
ded graphs. However, it is a largely unresolved problem to 
find an embedding that respects the inherent edge structure 
of the underlying graphs. Nevertheless, there is a wide range 
of graph embedding methods available that spans from spec-
tral methods [7, 8], over graph kernels [9, 10], to dissimilar-
ity embeddings [11, 12], and graph neural networks [13, 14].

In the present paper, we propose a graph-based pattern 
recognition framework that directly operates in the graph 
domain without embedding. Our method is based on graph 
matching algorithms [1], and in particular, on graph edit 
distance (GED) [15, 16]. GED quantifies a graph dissimi-
larity on the basis of the minimum amount of modification 
required to transform a source graph into a target graph. 
Distance-based classifiers such as the K-nearest neighbors 
classifier (KNN) joined with GED have shown reasonable 
classification accuracies on diverse classification tasks (e.g., 
[17, 18]).

The goal of the present paper is to improve the classifica-
tion performance of a KNN coupled with GED. To this end, 
we define a novel method that extracts extra information 
out of different reduced versions of the original graphs and 
combine this information in a multiple classifier system.

A preliminary version of the present paper appeared in 
[19]. We extend the paper in both method and experimental 
evaluation. In particular:

• We provide more comprehensive details and a formal 
definition of our novel framework.

• We use two rather than only one node centrality measure 
during the graph reduction process, viz. PageRank and 
Betweenness.

• We conduct extensive research to assess whether or not 
this additional selection criterion helps to achieve better 
classification accuracies.

• We combine reduced graphs from both subspaces 
(obtained with PageRank and Betweenness) as further 
ensemble strategy.

• We present and thoroughly discuss validation results.
• We evaluate the run time of our method and compare it 

to a reference system.

The remainder of the present paper is structured as follows. 
In “Graph matching”, we introduce the formal notion of 
graphs and briefly review graph matching techniques. In 
“Multiple classifier system based on reduced graphs”, we 
explain the details of our reduction method to produce dif-
ferently reduced graphs and describe how the combination 
of the distances or obtained predictions is performed in the 
reduced graph subspaces. In “Experimental evaluation”, we 
present the setup of our experiments and discuss the main 

results of our experimental evaluation. In the last section, 
we conclude the paper and suggest possible extensions for 
future work.

Graph Matching

In the present section, we formally define graph structures 
and also briefly review well-known graph matching methods 
(including the one actually employed in this paper).

Graph Structure

A graph G = (V ,E) in a graph space G consists of a finite set 
of n nodes V = {v1,… , vn} and a set of edges E ⊂ (V × V) 
between these nodes. The size of a graph is usually defined 
as the cardinality of its node set |V| = n . If the graph is 
directed, an edge is defined as (u, v) ∈ E with a starting 
node u ∈ V  and an end node v ∈ V  . Otherwise, an edge is 
defined as (u, v) ∈ E ↔ (v, u) ∈ E in the case of undirected 
graphs. A node (resp. edge) labeling function � ∶ V ↦ LV 
(resp. � ∶ E ↦ LE ) is defined in case of labeled nodes (resp. 
labeled edges). For example, the label alphabets LV and LE 
for both nodes and edges can be given by the set of integers 
L = {1, 2, 3,…} , the vector space L = ℝ

n , or a set of sym-
bolic labels L = {�, �, � ,…}.

In this paper, we focus our work on simple, undirected 
graphs, that is, graphs with at most one edge between pairs 
of nodes and no self-loops (i.e., edges between a node and 
itself). Note, however, that our method is in general applica-
ble to any kind of graphs (i.e., directed, undirected, labeled, 
unlabeled, etc.)

Graph Matching Methods

The present paper is concerned with structural pattern rec-
ognition with a strong focus on graph-based data representa-
tions [20]. The field of structural and graph-based pattern 
recognition has a long tradition [1, 21] and can roughly be 
subdivided into three areas, viz. graph matching, graph ker-
nel, and graph neural network. The focus of our research is 
on the first area—graph matching.

Graph matching refers to the evaluation of the dissimilar-
ity between two graphs. The overall aim of graph matching 
is to find a correspondence between the nodes and edges of 
two graphs that satisfies some, more or less, stringent con-
straints [1]. Standard procedures for testing graphs for iso-
morphism, for instance, are based on tree search techniques 
with backtracking [22, 23].

Tree search algorithms for (sub)graph isomorphism 
computation can also be adopted to so-called error-toler-
ant graph matching [24, 25]. Error-tolerant graph match-
ing allows quantifying a subtle dissimilarity score between 
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graphs even if they have no, or only very little, similarities 
in structure and labeling. Graph edit distance, is a prominent 
member of the family of error-tolerant approaches (details 
follow in the next subsection). Research on graph edit dis-
tance (and related measures) is still one of the most active 
fields in structural pattern recognition [18, 26, 27]. However, 
several other error-tolerant graph matching methods have 
been proposed in the literature. For instance, the authors of 
[28] introduce an error-tolerant graph matching that relies 
upon spectral features that encodes a graph as a bag of par-
tial node coverages. In [29] a probabilistic graph matching 
method that is based on sequences of nodes of random walks 
is proposed. In [30] a new graph matching based on mutual 
information between graphs with a combination of copula 
functions is proposed. We refer to [1] for more extensive 
reviews on different graph matching methods.

Graph Edit Distance

In the graph-based framework proposed in the present paper, 
we employ graph edit distance (GED) [15, 16] as basic 
matching algorithm. Note, however, that our framework 
works independently of the actual graph matching algorithm. 
This means, in particular, that GED could be substituted 
with any other graph matching method available. In this sub-
section, we give in short an introduction and definition to 
GED (so that the paper remains self-explaining).

When comparing two graphs G1 and G2 , GED computes 
the least amount of edit operations necessary to convert G1 
to G2 . In its original definition, three edit operations (namely 
insertions, deletions, and substitutions) are allowed on both 
nodes and edges. Employing those edit operations, GED 
computes an edit path �(G1,G2) between G1 and G2 as a set 
{e1,… , ek} of k edit operations ei that completely transform 
G1 into G2.

A cost function c(⋅) is commonly defined to weight the 
strength of each edit operation, and GED corresponds to 
the sum of costs of the edit path that minimizes the overall 
edit cost.

The problem of optimizing the overall cost of GED is 
known to be NP-complete for general graphs [31]. This 
means that the run time for finding the minimal cost edit 
path may be huge even for rather small graphs.

In recent years several approximate, or suboptimal, algo-
rithms for error-tolerant graph matching have been proposed 
[31–36]. These algorithms offer polynomial, rather than 
exponential, run times. Yet, in contrast to optimal error-tol-
erant graph matching, suboptimal algorithms do not guar-
antee to find the global minimum of the matching cost, but 
only a local one.

Another common way to make error-tolerant graph 
matching more efficient is to restrict considerations to 

special classes of graphs. Examples include the classes of 
ordered graphs [37], planar graphs [38], or trees [39].

In the present paper, we use the suboptimal algorithm 
BP for GED computation which is applicable to virtually 
all types of graphs [34, 40, 41]. BP is based on an (optimal) 
fast optimization procedure mapping nodes and their local 
structure of one graph to nodes and their local structure of 
another graph. The algorithm BP offers cubic time complex-
ity and is a widely used method in the field of graph based 
pattern recognition [42].

Multiple Classifier System Based on Reduced 
Graphs

In the present section, we thoroughly introduce and describe 
our novel framework. Roughly speaking, our method is 
based on three basic steps (as illustrated in Fig. 1).

• First, we create various reduced graph subspaces, that 
contain graphs that are in turn reduced to the nodes that 
contribute the most to the original graph structure. We 
employ two node centrality measures, viz. PageRank and 
Betweenness, as node selector criterion during the reduc-
tion process.

• The second step consists of computing a graph dissimi-
larity between the graphs in the reduced graph subspaces. 
For this purpose, we use the concept of GED as covered 
in “Graph Edit Distance”.

• The third and last step of our procedure consists in lin-
early combining either the distances or the predictions 
obtained in the different graph subspaces. Any classifica-
tion method that makes use of GED in some way can be 
used for this purpose (e.g., distance based graph kernels 
or distance based classifiers such as the K-nearest neigh-
bor classifier).

From a broad perspective, the proposed framework as 
shown in Fig. 1 is somehow related to the recently intro-
duced hierarchical graph matching framework [43].1 In this 
framework, the nodes are aggregated into super nodes during 
a graph compression process. A hierarchy of compressed 
graphs is constructed by means of a community detection 
algorithm. Then, the matching is performed, starting at the 
most compressed graphs and potentially going up level by 
level if a certain similarity threshold is exceeded. In our 
method, however, we make use of reduced graphs, i.e., nodes 
are omitted/deleted during the graph reduction procedure 
(rather than combined via compression). To this end, we 

1 Other hierarchical graph representations are presented in [44, 45], 
for instance.
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quantify the structural information of each node via central-
ity measures adapted from network technology (formally 
introduced in the next section). Next, we remove the nodes 
that contribute the least to the structure of the graph (accord-
ing to the centrality measure actually applied). Moreover, 
we use the extra information gained from the reduced graph 
subspaces in a multiple classifier scenario and do not per-
form a coarse-to-fine classification.

Our method of graph reduction might result in isolated 
nodes and/or graphs that are divided into several connected 
components. Yet, as we use GED for matching the reduced 
graphs, this is not an obstacle (as GED can handle both iso-
lated nodes and graphs that are not connected).

In the following three subsections (“Graph reduction, 
Graph matching in reduced graph spaces, and Building a 
multiple classifier system”), the three basic steps of our 
framework are described in greater detail.

Graph Reduction

Our approach crucially relies upon reduced graph subspaces. 
We define a particular graph subspace as the set of graphs 
reduced to a given percentage of their original size. Hence, 
we need a fast yet deterministic way of creating graphs of 
reduced sizes. The proposed reduction method is based on 
network’s node centrality measures [5].

Centrality measures indicate how important a node in 
a graph is by quantifying the contribution of each node to 
the graph connection. Roughly speaking there are two cat-
egories of centrality measures available, viz. Degree-based 
and Shortest-path based measures. The degree-based 

methods use the degree property of the nodes, i.e., how 
many edges are connected to a node, to derive their cen-
trality score. Meanwhile, the shortest path based algo-
rithms compute a node’s centrality score by counting 
the number of paths between any two pairs of nodes that 
passes by it. In the present paper, we focus on two popu-
lar centrality measures stemming from both categories, 
namely PageRank (degree-based) [46] and Betweenness 
(shortest path based) [47]. Note that our graph reduction 
framework is not only limited to those two measures. That 
is, any other centrality measures could be used as well.

The basic idea behind PageRank is that the importance 
of a node increases by being connected to other nodes 
that are themselves important. The importance of a node 
is thus proportional to the sum of the scores of the nodes 
in its neighborhood. A problem of this definition is, how-
ever, that if an influential node is linked to many other 
nodes then its high-centrality will be widespread among 
all its neighbors. To counter this issue the authors of [46] 
propose to dilute the influence of an influential node pro-
portionally to the number of its neighbors. Formally, the 
vector x that contains the n PageRank scores for all nodes 
{v1,… , vn} of a given graph G = (V ,E) is defined by

where

• � is used as a damping factor (there is no clearly defined 
theory to choose its value, it is often set to 0.85 as pro-
posed in [46]).

• A corresponds to the adjacency matrix of the graph G.

(1)x = �AD−1x + �1,

Fig. 1  Three basic steps of our novel framework: (1) graph reduction to obtain the reduced graph subspaces, (2) graph matching in reduced 
graph subspaces and (3) building a multiple classifier system
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• D is the diagonal matrix with elements Dii = max(dout
i
, 1) , 

where dout
i

 corresponds to the outdegree of the ith node.
• � is an additive constant (we conventionally set it to 1).

The betweenness centrality measure counts how many times 
a node lies on the shortest paths connecting pairs of nodes. 
In a graph with flowing information, it indicates, on average, 
the number of time messages passes between each pair of 
nodes. Formally, the betweenness score xi for the ith node 
vi ∈ V  of a given graph G = (V ,E) is defined by

w h e r e 

n
i

st
=

⎧
⎪
⎨
⎪⎩

1, if node v
i
lies on the shortest path between node v

s
∈ V and v

t
∈ V

0, otherwise

Once the node centrality scores are computed for each 
node (either with PageRank or with Betweenness), we sort 
them according to their centrality from the least to the most 
important one. With a reduction factor � ∈ [0, 1] we are then 
readily able to select the most influential ⌊��V�⌋ nodes in the 
graph, while the other nodes and their incident edges can be 
removed from the graph.

The reduction factor � can be seen as the percentage of 
remaining nodes of the original graph. That is, if we set 
� = 0.8 , then around 80% of the nodes remain in the reduced 
versions of the graphs. We can now arbitrarily vary the 
reduction factor � from 1.0 to 0.0 by different step-sizes 
(e.g., � ∈ {1.0, 0.8, 0.6, 0.4, 0.2} ) to obtain differently sized 
graphs out of one source graph. Note that with � = 1.0 all 

(2)xi =
∑

st

ni
st
,

the nodes remain in the reduced graph which obviously cor-
responds to the original graph.

In an illustrative example displayed in Fig. 2, we show 
an original graph g = (V ,E) with |V| = 14 and two reduced 
versions of the graph with � = 0.8 and � = 0.4 . The number 
of nodes that remain in the graph with � = 0.8 and � = 0.4 
is ⌊0.8 ⋅ 14⌋ = 11 and ⌊0.4 ⋅ 14⌋ = 5 , respectively.

In the remainder of this paper, we term a reduced graph 
(with reduction factor � ) as G� = (V�,E�) . When reducing 
all graphs in a given data set of size N, we obtain a reduced 
graph subspace G� = {G

(1)

�
,… ,G

(N)

�
} . Repeating this pro-

cess with different reduction factors �1,… , �n we obtain n 
reduced graph subspaces G�1

,… ,G�n
.

Graph Matching in Reduced Graph Spaces

Given the n different graph subspaces G�1
,… ,G�n

 , we can 
now compute pairwise graph dissimilarities in each graph 
subspace G�i

 . To this end, we employ the GED approxima-
tion BP as outlined in “Graph matching”. In detail, for each 
g raph G

(j)

�i
∈ G�i

 we crea te  a  d is t ance  vector 
dj = [dj,1, dj,2,… , dj,N] representing the distances between 
itself and the N other graphs in G�i

 and merge the obtained 
vectors to produce a distance matrix D�i

.

Building a Multiple Classifier System

Once the distance matrices D�i
 for each reduction level �i 

are obtained, we employ two different procedures to com-
bining them and getting a final classification result. In both 
of the combination scenarios, we employ a distance-based 

Fig. 2  Illustrative example of our reduction scheme on an artificial graph with both node selection criteria (i.e., PageRank and Betweenness) and 
� ∈ {0.8, 0.4} . (For better visibility, the PageRank scores are scaled up by factor 10)
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classifier, viz. a K-nearest-neighbor classifier (KNN). The 
KNN is clearly advantageous in our framework because it 
directly operates on the resulting distances and can also be 
used as an indicator of the underlying quality of the dis-
tances. Both combination procedures are described in detail 
in the following paragraphs.

The first combination procedure consists of linearly com-
bining the multiple distance matrices D�1

,… ,D�n
 at differ-

ent levels �1,… , �n into one meta-distance matrix defined by

where the parameter ��i
∈ [0, 1] weights the influence of 

each reduced graph subspace G�i
 . Matrix D is eventually fed 

into a KNN to perform the final classification.
The second idea for condensing the n different graph 

subspaces G�1
,… ,G�n

 consists of combining the predictions 
obtained from the KNN at each reduced graph subspace.

For mal ly,  we  ob t a in  a  p red ic t ion  vec tor 
p�i = [p1, p2,… , pN]

T for each graph subspace G�i
 where pj 

with j = 1,… ,N  corresponds to the prediction of the jth 
graph in the graph subspace G�i

 . The prediction vectors are 
finally linearly combined by

to obtain the final classification result. That is, we conduct a 
weighted majority voting as proposed in [48].

To weight the influence of each reduced graph subspace 
G�i

 both combination methods introduced above make use of 
a vector � = (��1

,… ,��n
) , that incorporates the n weight-

ing factors ��i
 for all graph subspaces.

Our goal is to linearly combine the n reduced graph sub-
spaces, and thus we apply further constraints on � such that 
each entry ��i

∈ � is comprised in a range between 0 and 1 
and the sum of all weights equals 1. Formally

We aim to find the linear coefficient vector �∗ such that the 
combined distance matrix D or the combined predictions P 
lead to the best possible classification accuracy. We use two 
different optimization strategies to find �∗.

The first optimization method consists of a search over 
the parameter space in grid-search fashion. Unfortunately, 
grid-search is not an efficient technique and scales poorly 
when the search space is large. In our specific case the search 
space has a size of O(Dn) , where D is the total number of 

(3)D =

n∑

i

��i
D�i

,

(4)P =

n∑

i

��i
p�i

(5)

n∑

i=1

��i
= 1

and

��i
∈]0, 1[ ∀i = 1,… , n

values that a weight ��i
∈ � can take and n is the number of 

graph subspaces that are potentially combined.
As a second optimization technique we use a genetic 

algorithm (GA) [49]. GAs are more efficient and scalable 
search procedures over large search spaces than grid search 
approaches. Therefore, by means of GAs, we are able to 
explore more subtle combinations of the weights and thus 
potentially obtain better classification accuracies. Yet, the 
optimality of the found solution is not guaranteed. It also 
has the disadvantage to suffer from overfitting and there is 
no well-defined regularization procedure to prevent it. In this 
scenario, we define � as the so-called chromosome where 
each entry ��i

∈ � represents a gene. We set the fitness func-
tion of a chromosome to be the classification accuracy of the 
KNN and allow both operations mutations and cross-overs.

Experimental Evaluation

Data Sets

During the evaluation phase of our novel procedure, we use 
six data sets from different domains. The AIDS and Muta-
genicity data sets are retrieved from the IAM graph data-
base [50]2 and the four other data sets (i.e., NCI1, Proteins, 
Enzymes, IMDB Binary) are retrieved from the TUDataset 
graph repository [51]3 In Table 1, we show some statistical 
properties for each graph data sets (the number of graphs, 
the number of graphs per split used for training, validation 
and testing, the number of classes, and the average number 
of nodes and edges)

The first three data sets (AIDS, mutagenicity, and NCI1) 
represent molecules stemming from two classes. The two 
categories from the AIDS data set represent molecules that 
may have an effect against the HI virus or not. The graphs 

Table 1  Properties of the graph data sets

We show the number of graphs ( |G| ) with the size of the training, 
validation and test set (tr, va, te), the number of classes ( |Ω| ) and the 
average number of nodes and edges ( ∅|V| , ∅|E| ) per data set

Data set |G| (tr, va, te) |Ω| ∅|V| ∅|E|

AIDS 2000 (250, 250, 1500) 2 9.5 10.0
Mutagenicity 4337 (1,500, 500, 2337) 2 30.3 30.8
NCI1 4110 (1500, 500, 2110) 2 29.9 32.3
Proteins 1113 (660, 220, 223) 2 39.1 72.8
Enzymes 600 (360, 120, 120) 6 32.6 62.1
IMDB binary 1000 (600, 200, 200) 2 19.8 96.5

2 www. iam. unibe. ch/ fki/ datab ases/ iam- graph- datab ase.
3 http:// www. graph learn ing. io/.

http://www.iam.unibe.ch/fki/databases/iam-graph-database
http://www.graphlearning.io/
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from the mutagenicity data set represent molecules that may 
have mutation properties, and the graphs in the NCI1 data 
set represent molecules that are able (or not) to diminish 
the expansion of tumorous cells. The graphs from the Pro-
teins data set correspond to proteins that are classified as 
enzymes or non-enzymes. The Enzymes graphs represent 
tertiary proteins stemming from six enzyme classes [3] The 
IMDB-binary graphs encode social networks representing 
movie collaborations between different actors/actresses.

We split all data sets into three disjoint subsets for train-
ing, validation, and testing as follows. We split the graphs 
from the IAM graph repository according to the proposed 
splitting of the benchmark. The NCI1 data set is split to 
match the size of the three sets of the Mutagenicity data 
set. The other data sets are divided with respect to the 
60–20–20% split rule for training, validation, and test sets, 
respectively.

Experimental Setup and Validation Process

The main purpose of the following experiments is to empiri-
cally verify whether or not the information extracted out of 
the reduced graphs can help to improve the overall classifi-
cation performance. To test this hypothesis, we first build a 
baseline for our evaluation by running a KNN classifier on 
the original graphs.

The individual hyperparameters of the KNN are opti-
mized with the graphs contained in the validation set. To 
alleviate overfitting during the optimization process, we 
apply a fivefold cross-validation. The parameters to opti-
mize consist of � ∈]0, 1[ that weights the relative influence 
of node and edge edit operation costs and k ∈ {1, 3, 5} that 
corresponds to the number of neighbors used by the KNN. 

We show the optimal parameters � and k found for each 
data set in Table 2.

For our novel framework, we use the optimized hyper-
parameters � and k computed during the optimization 
phase on all graph subspaces G�1

,… ,G�n
 . We set the 

reduction factors to � ∈ {1.0, 0.8, 0.6, 0.4, 0.2} to obtain the 
original graph space and four reduced graph subspaces 
with both PageRank and Betweenness. In our evaluation 
the five graph (sub)spaces, reduced with PageRank and 
Betweenness, are either used individually or combined 
with each other. In the combined case, we obtain a total 
of nine graph (sub)spaces (the original graph space and 
four subspaces per centrality measure).

When optimizing the weighting parameters � with 
grid search we use the five reduction levels presented 
above in conjunction with 11 possible weighting factors, 
i.e. ��i

∈ {1.0, 0.9,… , 0.1, 0.0} . Only with those reduc-
tion factors the search space is already quite large (hav-
ing 115 = 161, 051 different possibilities). Because of the 
exponential growth of the search space we cannot apply 
the grid-search procedure in the scenario where we com-
bine PageRank and Betweenness graph subspaces (in this 
case the search space would have a size of 119 ≈ 2.9 billion 
possibilities which is no longer feasible).

For the GA optimization, we use a random initial popu-
lation of 30 individual chromosomes, where the random 
weights of each chromosome (i.e., the genes) are defined 
such that they sum up to one to match the weighting con-
straints. Furthermore, the crossover sites in each iteration 
of the GA are randomly chosen, the mutation probability 
pm is set to 0.1, and we run the GA for 100 iterations.

In Table 3 we summarize all the reduction, combina-
tion, and optimization methods discussed above. We are 
now able to combine all the presented methods with each 
other. For instance, we can create a system termed PR-
CoD-GS that associates PageRank with the combination 
of distances and a grid search optimization. As stated 
above, the grid search optimization is not applicable to 
the combined reduction, leading to a total of ten different 
experimental setups.

In Fig. 3, we show a bar plot that displays the individual 
weights �∗ obtained after the optimization procedure. The 
figure exhibits the influence of the individually reduced 
subspaces for all conducted experiments.

Table 2  Optimal values for 
� and k obtained during the 
hyperparameter optimization on 
the validation sets

Data set � k

AIDS 0.7 1
Mutagenicity 0.6 5
NCI1 0.7 5
Proteins 0.9 3
Enzymes 0.9 1
IMDB binary 0.9 5

Table 3  Different reduction, 
combination, and optimization 
methods to create ten 
experimental setups

aDue to computational reasons this combined reduction is only optimized via GA

Reduction methods Combination methods Optimization methods

PageRank (PR) Combination of distances (CoD) Grid search (GS)
Betweenness (BW) Combination of predictions (CoP) Genetic algorithm (GA)
PageRank + betweenness (PR 

+ BW)a
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In some cases, we observe that the original graph sub-
space G�1.0

 dominates the other subspaces. This trend is par-
ticularly apparent, for instance, on the Enzymes and NCI1 
data sets with BW-CoD-GS and BW-CoP-GS, respectively. 
On the other hand, we can observe in some cases that the 
reduced graph subspaces substantially contribute to the 
combined distances and/or predictions. For instance, on the 
Mutagenicity or Proteins data sets with BW-CoP-GS, the 
original graph space is completely omitted or does not sub-
stantially influence the final classification.

Yet, in tendency, no clear pattern in the weighting fac-
tors is visible that could favor any of the graph subspaces. 
Thus the optimal weighting parameters have to be found in 
an empirical fashion. This observation may indicate that all 
the reduced subspaces are somehow important and that the 
optimal weighting depends on the actual application.4

Qualitative Analysis of the Reduced Graphs

In Figs. 4 and 5, we show examples of graph reductions with 
PageRank and Betweenness at different reduction levels � 
on two data sets.5

We observe noticeable differences between the two cen-
trality measures. When reducing the graphs based on the 
PageRank selection method, we generally preserve the intra-
community nodes. That is, communities are kept together 
while being separated from each other. Roughly speaking, 
PageRank tends to produce reduced graphs with large num-
bers of connected components. This effect is particularly 
apparent in Fig. 4.

On the other hand, by deleting nodes upon low between-
ness values, we keep the backbone structure of the graph. 
That is, we observe that the main paths in the graph form 
communities and are kept when discarding nodes from the 
graph. Simultaneously, the external nodes from the commu-
nities are omitted. This effect is particularly visible in Fig. 5.

Fig. 3  Importance of the individual graph subspaces in the linear combination for all data sets as well as all reduction, combination and optimi-
zation methods

4 We also study the weighting factors of each graph subspace when 
combining PageRank and Betweenness graph subspaces. Yet, no 
clear trend appears in the visualization and thus we do not display 
those results here.

5 On the other data sets similar observations can be made (see 
Appendix A).
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Fig. 4  Reduced molecular compound from the enzyme data set

Fig. 5  Reduced molecular compound from the proteins data set

Table 4  Classification accuracy 
[%] obtained on the test set with 
linear combinations of reduced 
graphs

We present the results obtained by a KNN for the baseline and our two combination methods that are com-
bination of distances (CoD) and combination of predictions (CoP). The best result per data set is shown in 
boldface. ( ◦/⋅ : statistically significantly better/worse than the baseline on a 5% level using a Z-test)

Data set AIDS Mutagenicity NCI1 Proteins Enzymes IMDB-binary

Method
 Baseline KNN 98.53 71.33 70.33 73.82 41.67 66.00
 PR − CoD − GS 99.13◦ 71.84 72.09 73.39 45.83 64,50
 PR − CoD − GA 99.13◦ 72.66 73.22◦ 75.54 48.33◦ 66.00
 PR − CoP − GS 99.33◦ 72.32 70.52 73.82 41.67 70.00
 PR − CoP − GA 99.13◦ 71.84 70.52 76.39◦ 37.50⋅ 70.00
 BW − CoD − GS 98.07 71.25 71.28 69.52 46.67 64.00
 BW − CoD − GA 99.20◦ 72.53 71.56 75.53 49.18◦ 64.00
 BW − CoP − GS 98.07 71.29 70.52 76.82◦ 43.33 65.50
 BW − CoP − GA 99.20◦ 71.59 70.24 73.82 41.67 65.50
 PR + BW − CoD − GA 99.13◦ 72.66 71.89 75.54 48.33◦ 65.50
 PR + BW − CoP − GA 99.27◦ 71.72 69.38 77.25◦ 40.83 65.00
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Results on the Test Sets

In Table 4, we present the classification accuracies obtained 
on all test sets by our method that combines either the dis-
tances, termed combination of distance matrices (CoD), or 
the predictions, termed combination of predictions (CoP). 
Both combinations are either applied on PageRank (PR), 
betweenness (BW), or PageRank and betweenness (PR + 
BW) reduced graphs. Additionally, we present individual 
results for both optimization strategies, viz. grid search (GS) 
and genetic algorithm (GA) (note that for PR + BW only the 
GA optimization is applied due to computational reasons).

We start our discussion with a focus on the Pagerank 
reduced graphs. We observe that at least one of the proposed 
combinations of distances or predictions of the reduced sub-
spaces improves the classification accuracy compared to the 
baseline on all data sets. In 21 out of 24 comparisons our 
novel approach achieves better results than the reference sys-
tem (6 of these improvements are statistically significant). 
These significant improvements are observed on four dif-
ferent data sets. On the other hand we observe only three 
deteriorations of which only one is significant. Last but not 
least, we observe that on four data sets the combination of 
PageRank reduced graphs achieves the overall best results 
(shown in bold face). Two of these overall best results are 
achieved with distance based and two with prediction based 
combinations.

In the case of combinations of betweenness reduced 
graphs, comparable, yet slightly worse, results as with the 
PageRank reduction are obtained. That is, with Between-
ness we observe only in 13 out ouf 24 comparisons an 
improvement over the reference system. On the Enzymes 
data set, however, the classification accuracy is substantially 
improved by about 8 percentage points when compared to 
the baseline (from 41.67% to 49.18%).

When combining both PageRank and betweenness graph 
subspaces, we observe eight improvements in total when 
compared to the baseline. Three of these improvements are 
statistically significant. Moreover, with this particular com-
bination we obtain overall best results on the Mutagenicity 
and Proteins data sets.

To assess which reduction method (PR or BW) together 
with which combination method (CoD or CoP), coupled 
with which optimization procedure (GS or GA) performs the 
best, we rank all methods per data set and sum up the ranks 
per method. We can report two clear winners that achieve the 
smallest sum of rank points, viz. PR-CoD-GA and PR+BW-
CoD-GA. It is remarkable that PageRank plays at least a role 
in both winners and that both winners are based on the dis-
tance combination that is optimized via genetic algorithm. 
At the opposite end of the ranking, we have BW-CoD-GS 
and BW-CoP-GA.

Actually, if we consider each individual graph subspace 
as an individual system, we obtain an ensemble of classifi-
ers. It is well-known that ensemble learners are more robust 
to potential noise and offer better generalization power than 
individual classifiers. As the proposed method exploits the 
power of ensemble learners, this gives us a possible and 
plausible explanation of the substantial improvement of the 
novel method compared to the reference system.

In summary, we can report that the GA optimization 
method achieves better results than the grid search, the com-
bination of distances performs better than the combination 
of predictions, and PageRank works better than Betweenness 
for building the reduced graph subspaces.

Time Analysis

The main drawback of our novel three-step method is the 
extra computation time used to compute GED in the different 

Fig. 6  Runtime of GED compu-
tation for each graph subspace 
per data set
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graph subspaces. The computation of GED is actually the 
bottleneck of our framework in terms of time complexity 
(although using an O(n3) approximation algorithm where 
n = |V| ). Hence, we focus our runtime analysis on the sec-
ond step of our framework.

Based on the fact that the reduced graphs have by def-
inition fewer nodes, the run time of GED is supposed to 
decrease the smaller the graph subspaces are. In Fig. 6, we 
show the runtime of GED for each graph subspace per data 
set. We observe that in 4 out of 6 data sets (i.e., AIDS, pro-
teins, enzymes, and IMDB-Binary) the execution time is 
only about twice slower compared to the runtime of GED 
computation on the original graphs. On the other two data 
sets (Mutagenicity and NCI1) the run time is about three 
times slower than the original system. Considering that our 
combined systems are superior to the reference system, one 
can certainly argue that the higher runtime is worth it in 
any case.

Conclusion and Future Work

In the present paper, we propose a novel framework for 
graph-based pattern recognition that combines extra infor-
mation gained from reduced graph subspaces. Roughly 
speaking, the proposed method works in three subsequent 
steps. In the first step, we produce multiple reduced graph 
subspaces using graph reduction methods. The graph reduc-
tion consists of first evaluating the node importances by 
means of PageRank or Betweenness and then removing 
the least important ones. During the second step, we use 
GED to compute the distances between the graphs in their 
corresponding reduced graph subspaces. In the last step, 
we linearly combine either the distances or the predictions 
obtained in the differently reduced graph subspaces. The 
linear coefficients for the combination are either optimized 
by means of a grid search or a genetic algorithm.

We empirically validate the advantage of our novel 
method by performing an evaluation on data sets from a 
broad range of domains. In particular, we show that a KNN 
classifier clearly benefits from the combination of the dis-
tances or predictions of reduced graphs. That is, on all data 
sets the proposed algorithmic framework outperforms the 
reference system by several percentage points. Comparing 
the different subsystems with each other, we conclude that 
the PageRank reduction in conjunction with the combina-
tion of distances optimized via genetic algorithm is a good 
choice in general.

Regarding the importance of each graph subspace we 
can conclude that all of them are somehow important. The 
actual importance seems to depend on both the data set and 
optimization process.

Clearly, the increase in computation time is the major 
drawback of the proposed system. The runtime of our novel 
framework is actually higher than that of the reference sys-
tem, but not five times higher, as one might have expected 
at first glance. The reason for this is, of course, the dramatic 
decrease of the runtime in strongly reduced graph subspaces. 
Overall, we observe runtimes that are twice or at most three 
times as high as those of the reference system. Consider-
ing the significantly improved classification accuracy, this 
slowdown seems acceptable.

In future work, we plan to employ other reduction pro-
cesses in our framework. In particular, methods which 
might produce reduced graphs that contain more relevant 
information within its reduced structure. A learning-based 
reduction method would be a good candidate, for instance. 
Such a method might learn which node to delete to con-
serve as much information as possible in the structure of 
the reduced graph. A learning-based method would possibly 
be also advantageous regarding the runtime. Once trained, 
such a system would allow our framework to scale to very 
large graphs.

A complementary idea is to embed graphs (implicitly or 
explicitly) into a vector space and then carry out the com-
bination of distances (e.g., by means of a kernel machine). 
For instance, each (reduced) graph can be embedded into 
a vector space using a specific kernel. Once the (reduced) 
graphs are embedded, one could instantly apply the second 
and third step our framework in the embedding space.

Another line of research includes to further investigate 
the runtime of our framework when working with large 
graphs (e.g., |V| > 1000 ). It would be particularly interest-
ing to measure the extra-time required for the  computation 
of GED in the individual graph subspaces. This evaluation 
could give us insight on a general trend of the runtime by 
showing the computational issues of GED on large graphs 
and revealing the substantial reduction of the runtime in the 
reduced graph subspaces.

Appendix A: Examples of Reduced Graph

See Figs. 7, 8, 9 and 10.
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Fig. 7  Reduced molecular compound from the AIDS data set

Fig. 8  Reduced molecular compound from the mutagenicity data set

Fig. 9  Reduced molecular compound from the NCI1 data set
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