
Vol.:(0123456789)

SN Computer Science (2023) 4:743
https://doi.org/10.1007/s42979-023-02194-1

SN Computer Science

ORIGINAL RESEARCH

Building Multiple Classifier Systems Using Linear Combinations
of Reduced Graphs

Anthony Gillioz1 · Kaspar Riesen1,2

Received: 20 May 2022 / Accepted: 28 July 2023
© The Author(s) 2023

Abstract
Despite great efforts done in research in the last decades, the classification of general graphs, i.e., graphs with unconstrained
labeling and structure, remains a challenging task. Due to the inherent relational structure of graphs it is difficult, or even
impossible, to apply standard pattern recognition methods to graphs to achieve high recognition accuracies. Common methods
to solve the non-trivial problem of graph classification employ graph matching in conjunction with a distance-based classifier
or a kernel machine. In the present paper, we address the specific task of graph classification by means of a novel framework
that uses information acquired from a broad range of reduced graph subspaces. Our novel approach can be roughly divided
into three successive steps. In the first step, differently reduced graphs are created out of the original graphs relying on node
centrality measures. In the second step, we compute the graph edit distance between each reduced graph and all the other
graphs of the corresponding graph subspace. Finally, we linearly combine the distances in the third step and feed them into
a distance-based classifier to obtain the final classification result. On six graph data sets, we empirically confirm that the
proposed multiple classifier system directly benefits from the combined distances computed in the various graph subspaces.

Keywords Structural pattern recognition · Graph matching · Genetic algorithm · Multiple classifier systems

Introduction

A graph, in its generic formulation, is a universal represen-
tational formalism that consists of a finite set of basic enti-
ties (termed nodes), in addition to a set of edges that might
exist between pairs of nodes. The flexibility and expressive-
ness of graphs lies, on one hand, in the set-theoretic defi-
nition of nodes and, on the other hand—and maybe more
importantly—in the possibility of modeling relationships
via edges.

Due to their great generality and flexibility, graphs can be
used to learn and study data from a broad variety of applica-
tions (in particular in pattern recognition and related fields
[1]). Prominent examples of classes of objects, which can be
formally represented in a suitable and natural way by means
of graphs, are molecular compounds [2], protein structures
[3], binary executables [4], or networks [5], to name just a
few examples (see [6] for more examples that emphasize the
universality of this specific data structure).

When the underlying data in a pattern recognition sce-
nario consists of both features along with relationships that
might exist between different subparts of the data, we con-
sider this to be structural pattern recognition. Such data are
best formalized by means of graphs or trees. This is in stark
contrast to statistical pattern recognition that employs quan-
titative features that are encoded in n-dimensional feature
vectors. Both approaches share common roots that consists
of extracting efficient representations out of a given set of
data and mapping the extracted representations to one of
the possible classes. Unfortunately, the inherent relational
structure of graphs makes it impossible to directly translate
the methods, formerly proposed for statistical data, to graph
or tree data.

This article is part of the topical collection “Advances on Pattern
Recognition Applications and Methods 2022” guest edited by Ana
Fred, Maria De Marsico and Gabriella Sanniti di Baja.

 * Anthony Gillioz
 anthony.gillioz@unibe.ch

 Kaspar Riesen
 kaspar.riesen@unibe.ch

1 Institute of Computer Science, University of Bern,
Neubrückstrasse 10, 3012 Bern, Switzerland

2 Institute for Informations Systems, University
of Appl. Sci. and Arts Northwestern Switzerland,
4600 Olten, Switzerland

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-023-02194-1&domain=pdf
http://orcid.org/0000-0001-7352-3708

 SN Computer Science (2023) 4:743 743 Page 2 of 15

SN Computer Science

A popular strategy to tackle this issue is to map graphs
into an implicit or explicit embedding space and eventually
apply statistical pattern recognition algorithms to the embed-
ded graphs. However, it is a largely unresolved problem to
find an embedding that respects the inherent edge structure
of the underlying graphs. Nevertheless, there is a wide range
of graph embedding methods available that spans from spec-
tral methods [7, 8], over graph kernels [9, 10], to dissimilar-
ity embeddings [11, 12], and graph neural networks [13, 14].

In the present paper, we propose a graph-based pattern
recognition framework that directly operates in the graph
domain without embedding. Our method is based on graph
matching algorithms [1], and in particular, on graph edit
distance (GED) [15, 16]. GED quantifies a graph dissimi-
larity on the basis of the minimum amount of modification
required to transform a source graph into a target graph.
Distance-based classifiers such as the K-nearest neighbors
classifier (KNN) joined with GED have shown reasonable
classification accuracies on diverse classification tasks (e.g.,
[17, 18]).

The goal of the present paper is to improve the classifica-
tion performance of a KNN coupled with GED. To this end,
we define a novel method that extracts extra information
out of different reduced versions of the original graphs and
combine this information in a multiple classifier system.

A preliminary version of the present paper appeared in
[19]. We extend the paper in both method and experimental
evaluation. In particular:

• We provide more comprehensive details and a formal
definition of our novel framework.

• We use two rather than only one node centrality measure
during the graph reduction process, viz. PageRank and
Betweenness.

• We conduct extensive research to assess whether or not
this additional selection criterion helps to achieve better
classification accuracies.

• We combine reduced graphs from both subspaces
(obtained with PageRank and Betweenness) as further
ensemble strategy.

• We present and thoroughly discuss validation results.
• We evaluate the run time of our method and compare it

to a reference system.

The remainder of the present paper is structured as follows.
In “Graph matching”, we introduce the formal notion of
graphs and briefly review graph matching techniques. In
“Multiple classifier system based on reduced graphs”, we
explain the details of our reduction method to produce dif-
ferently reduced graphs and describe how the combination
of the distances or obtained predictions is performed in the
reduced graph subspaces. In “Experimental evaluation”, we
present the setup of our experiments and discuss the main

results of our experimental evaluation. In the last section,
we conclude the paper and suggest possible extensions for
future work.

Graph Matching

In the present section, we formally define graph structures
and also briefly review well-known graph matching methods
(including the one actually employed in this paper).

Graph Structure

A graph G = (V ,E) in a graph space G consists of a finite set
of n nodes V = {v1,… , vn} and a set of edges E ⊂ (V × V)
between these nodes. The size of a graph is usually defined
as the cardinality of its node set |V| = n . If the graph is
directed, an edge is defined as (u, v) ∈ E with a starting
node u ∈ V and an end node v ∈ V . Otherwise, an edge is
defined as (u, v) ∈ E ↔ (v, u) ∈ E in the case of undirected
graphs. A node (resp. edge) labeling function � ∶ V ↦ LV
(resp. � ∶ E ↦ LE) is defined in case of labeled nodes (resp.
labeled edges). For example, the label alphabets LV and LE
for both nodes and edges can be given by the set of integers
L = {1, 2, 3,…} , the vector space L = ℝ

n , or a set of sym-
bolic labels L = {�, �, � ,…}.

In this paper, we focus our work on simple, undirected
graphs, that is, graphs with at most one edge between pairs
of nodes and no self-loops (i.e., edges between a node and
itself). Note, however, that our method is in general applica-
ble to any kind of graphs (i.e., directed, undirected, labeled,
unlabeled, etc.)

Graph Matching Methods

The present paper is concerned with structural pattern rec-
ognition with a strong focus on graph-based data representa-
tions [20]. The field of structural and graph-based pattern
recognition has a long tradition [1, 21] and can roughly be
subdivided into three areas, viz. graph matching, graph ker-
nel, and graph neural network. The focus of our research is
on the first area—graph matching.

Graph matching refers to the evaluation of the dissimilar-
ity between two graphs. The overall aim of graph matching
is to find a correspondence between the nodes and edges of
two graphs that satisfies some, more or less, stringent con-
straints [1]. Standard procedures for testing graphs for iso-
morphism, for instance, are based on tree search techniques
with backtracking [22, 23].

Tree search algorithms for (sub)graph isomorphism
computation can also be adopted to so-called error-toler-
ant graph matching [24, 25]. Error-tolerant graph match-
ing allows quantifying a subtle dissimilarity score between

SN Computer Science (2023) 4:743 Page 3 of 15 743

SN Computer Science

graphs even if they have no, or only very little, similarities
in structure and labeling. Graph edit distance, is a prominent
member of the family of error-tolerant approaches (details
follow in the next subsection). Research on graph edit dis-
tance (and related measures) is still one of the most active
fields in structural pattern recognition [18, 26, 27]. However,
several other error-tolerant graph matching methods have
been proposed in the literature. For instance, the authors of
[28] introduce an error-tolerant graph matching that relies
upon spectral features that encodes a graph as a bag of par-
tial node coverages. In [29] a probabilistic graph matching
method that is based on sequences of nodes of random walks
is proposed. In [30] a new graph matching based on mutual
information between graphs with a combination of copula
functions is proposed. We refer to [1] for more extensive
reviews on different graph matching methods.

Graph Edit Distance

In the graph-based framework proposed in the present paper,
we employ graph edit distance (GED) [15, 16] as basic
matching algorithm. Note, however, that our framework
works independently of the actual graph matching algorithm.
This means, in particular, that GED could be substituted
with any other graph matching method available. In this sub-
section, we give in short an introduction and definition to
GED (so that the paper remains self-explaining).

When comparing two graphs G1 and G2 , GED computes
the least amount of edit operations necessary to convert G1
to G2 . In its original definition, three edit operations (namely
insertions, deletions, and substitutions) are allowed on both
nodes and edges. Employing those edit operations, GED
computes an edit path �(G1,G2) between G1 and G2 as a set
{e1,… , ek} of k edit operations ei that completely transform
G1 into G2.

A cost function c(⋅) is commonly defined to weight the
strength of each edit operation, and GED corresponds to
the sum of costs of the edit path that minimizes the overall
edit cost.

The problem of optimizing the overall cost of GED is
known to be NP-complete for general graphs [31]. This
means that the run time for finding the minimal cost edit
path may be huge even for rather small graphs.

In recent years several approximate, or suboptimal, algo-
rithms for error-tolerant graph matching have been proposed
[31–36]. These algorithms offer polynomial, rather than
exponential, run times. Yet, in contrast to optimal error-tol-
erant graph matching, suboptimal algorithms do not guar-
antee to find the global minimum of the matching cost, but
only a local one.

Another common way to make error-tolerant graph
matching more efficient is to restrict considerations to

special classes of graphs. Examples include the classes of
ordered graphs [37], planar graphs [38], or trees [39].

In the present paper, we use the suboptimal algorithm
BP for GED computation which is applicable to virtually
all types of graphs [34, 40, 41]. BP is based on an (optimal)
fast optimization procedure mapping nodes and their local
structure of one graph to nodes and their local structure of
another graph. The algorithm BP offers cubic time complex-
ity and is a widely used method in the field of graph based
pattern recognition [42].

Multiple Classifier System Based on Reduced
Graphs

In the present section, we thoroughly introduce and describe
our novel framework. Roughly speaking, our method is
based on three basic steps (as illustrated in Fig. 1).

• First, we create various reduced graph subspaces, that
contain graphs that are in turn reduced to the nodes that
contribute the most to the original graph structure. We
employ two node centrality measures, viz. PageRank and
Betweenness, as node selector criterion during the reduc-
tion process.

• The second step consists of computing a graph dissimi-
larity between the graphs in the reduced graph subspaces.
For this purpose, we use the concept of GED as covered
in “Graph Edit Distance”.

• The third and last step of our procedure consists in lin-
early combining either the distances or the predictions
obtained in the different graph subspaces. Any classifica-
tion method that makes use of GED in some way can be
used for this purpose (e.g., distance based graph kernels
or distance based classifiers such as the K-nearest neigh-
bor classifier).

From a broad perspective, the proposed framework as
shown in Fig. 1 is somehow related to the recently intro-
duced hierarchical graph matching framework [43].1 In this
framework, the nodes are aggregated into super nodes during
a graph compression process. A hierarchy of compressed
graphs is constructed by means of a community detection
algorithm. Then, the matching is performed, starting at the
most compressed graphs and potentially going up level by
level if a certain similarity threshold is exceeded. In our
method, however, we make use of reduced graphs, i.e., nodes
are omitted/deleted during the graph reduction procedure
(rather than combined via compression). To this end, we

1 Other hierarchical graph representations are presented in [44, 45],
for instance.

 SN Computer Science (2023) 4:743 743 Page 4 of 15

SN Computer Science

quantify the structural information of each node via central-
ity measures adapted from network technology (formally
introduced in the next section). Next, we remove the nodes
that contribute the least to the structure of the graph (accord-
ing to the centrality measure actually applied). Moreover,
we use the extra information gained from the reduced graph
subspaces in a multiple classifier scenario and do not per-
form a coarse-to-fine classification.

Our method of graph reduction might result in isolated
nodes and/or graphs that are divided into several connected
components. Yet, as we use GED for matching the reduced
graphs, this is not an obstacle (as GED can handle both iso-
lated nodes and graphs that are not connected).

In the following three subsections (“Graph reduction,
Graph matching in reduced graph spaces, and Building a
multiple classifier system”), the three basic steps of our
framework are described in greater detail.

Graph Reduction

Our approach crucially relies upon reduced graph subspaces.
We define a particular graph subspace as the set of graphs
reduced to a given percentage of their original size. Hence,
we need a fast yet deterministic way of creating graphs of
reduced sizes. The proposed reduction method is based on
network’s node centrality measures [5].

Centrality measures indicate how important a node in
a graph is by quantifying the contribution of each node to
the graph connection. Roughly speaking there are two cat-
egories of centrality measures available, viz. Degree-based
and Shortest-path based measures. The degree-based

methods use the degree property of the nodes, i.e., how
many edges are connected to a node, to derive their cen-
trality score. Meanwhile, the shortest path based algo-
rithms compute a node’s centrality score by counting
the number of paths between any two pairs of nodes that
passes by it. In the present paper, we focus on two popu-
lar centrality measures stemming from both categories,
namely PageRank (degree-based) [46] and Betweenness
(shortest path based) [47]. Note that our graph reduction
framework is not only limited to those two measures. That
is, any other centrality measures could be used as well.

The basic idea behind PageRank is that the importance
of a node increases by being connected to other nodes
that are themselves important. The importance of a node
is thus proportional to the sum of the scores of the nodes
in its neighborhood. A problem of this definition is, how-
ever, that if an influential node is linked to many other
nodes then its high-centrality will be widespread among
all its neighbors. To counter this issue the authors of [46]
propose to dilute the influence of an influential node pro-
portionally to the number of its neighbors. Formally, the
vector x that contains the n PageRank scores for all nodes
{v1,… , vn} of a given graph G = (V ,E) is defined by

where

• � is used as a damping factor (there is no clearly defined
theory to choose its value, it is often set to 0.85 as pro-
posed in [46]).

• A corresponds to the adjacency matrix of the graph G.

(1)x = �AD−1x + �1,

Fig. 1 Three basic steps of our novel framework: (1) graph reduction to obtain the reduced graph subspaces, (2) graph matching in reduced
graph subspaces and (3) building a multiple classifier system

SN Computer Science (2023) 4:743 Page 5 of 15 743

SN Computer Science

• D is the diagonal matrix with elements Dii = max(dout
i
, 1) ,

where dout
i

 corresponds to the outdegree of the ith node.
• � is an additive constant (we conventionally set it to 1).

The betweenness centrality measure counts how many times
a node lies on the shortest paths connecting pairs of nodes.
In a graph with flowing information, it indicates, on average,
the number of time messages passes between each pair of
nodes. Formally, the betweenness score xi for the ith node
vi ∈ V of a given graph G = (V ,E) is defined by

w h e r e

n
i

st
=

⎧
⎪
⎨
⎪⎩

1, if node v
i
lies on the shortest path between node v

s
∈ V and v

t
∈ V

0, otherwise

Once the node centrality scores are computed for each
node (either with PageRank or with Betweenness), we sort
them according to their centrality from the least to the most
important one. With a reduction factor � ∈ [0, 1] we are then
readily able to select the most influential ⌊��V�⌋ nodes in the
graph, while the other nodes and their incident edges can be
removed from the graph.

The reduction factor � can be seen as the percentage of
remaining nodes of the original graph. That is, if we set
� = 0.8 , then around 80% of the nodes remain in the reduced
versions of the graphs. We can now arbitrarily vary the
reduction factor � from 1.0 to 0.0 by different step-sizes
(e.g., � ∈ {1.0, 0.8, 0.6, 0.4, 0.2}) to obtain differently sized
graphs out of one source graph. Note that with � = 1.0 all

(2)xi =
∑

st

ni
st
,

the nodes remain in the reduced graph which obviously cor-
responds to the original graph.

In an illustrative example displayed in Fig. 2, we show
an original graph g = (V ,E) with |V| = 14 and two reduced
versions of the graph with � = 0.8 and � = 0.4 . The number
of nodes that remain in the graph with � = 0.8 and � = 0.4
is ⌊0.8 ⋅ 14⌋ = 11 and ⌊0.4 ⋅ 14⌋ = 5 , respectively.

In the remainder of this paper, we term a reduced graph
(with reduction factor �) as G� = (V�,E�) . When reducing
all graphs in a given data set of size N, we obtain a reduced
graph subspace G� = {G

(1)

�
,… ,G

(N)

�
} . Repeating this pro-

cess with different reduction factors �1,… , �n we obtain n
reduced graph subspaces G�1

,… ,G�n
.

Graph Matching in Reduced Graph Spaces

Given the n different graph subspaces G�1
,… ,G�n

 , we can
now compute pairwise graph dissimilarities in each graph
subspace G�i

 . To this end, we employ the GED approxima-
tion BP as outlined in “Graph matching”. In detail, for each
g raph G

(j)

�i
∈ G�i

 we crea te a d is t ance vector
dj = [dj,1, dj,2,… , dj,N] representing the distances between
itself and the N other graphs in G�i

 and merge the obtained
vectors to produce a distance matrix D�i

.

Building a Multiple Classifier System

Once the distance matrices D�i
 for each reduction level �i

are obtained, we employ two different procedures to com-
bining them and getting a final classification result. In both
of the combination scenarios, we employ a distance-based

Fig. 2 Illustrative example of our reduction scheme on an artificial graph with both node selection criteria (i.e., PageRank and Betweenness) and
� ∈ {0.8, 0.4} . (For better visibility, the PageRank scores are scaled up by factor 10)

 SN Computer Science (2023) 4:743 743 Page 6 of 15

SN Computer Science

classifier, viz. a K-nearest-neighbor classifier (KNN). The
KNN is clearly advantageous in our framework because it
directly operates on the resulting distances and can also be
used as an indicator of the underlying quality of the dis-
tances. Both combination procedures are described in detail
in the following paragraphs.

The first combination procedure consists of linearly com-
bining the multiple distance matrices D�1

,… ,D�n
 at differ-

ent levels �1,… , �n into one meta-distance matrix defined by

where the parameter ��i
∈ [0, 1] weights the influence of

each reduced graph subspace G�i
 . Matrix D is eventually fed

into a KNN to perform the final classification.
The second idea for condensing the n different graph

subspaces G�1
,… ,G�n

 consists of combining the predictions
obtained from the KNN at each reduced graph subspace.

For mal ly, we ob t a in a p red ic t ion vec tor
p�i = [p1, p2,… , pN]

T for each graph subspace G�i
 where pj

with j = 1,… ,N corresponds to the prediction of the jth
graph in the graph subspace G�i

 . The prediction vectors are
finally linearly combined by

to obtain the final classification result. That is, we conduct a
weighted majority voting as proposed in [48].

To weight the influence of each reduced graph subspace
G�i

 both combination methods introduced above make use of
a vector � = (��1

,… ,��n
) , that incorporates the n weight-

ing factors ��i
 for all graph subspaces.

Our goal is to linearly combine the n reduced graph sub-
spaces, and thus we apply further constraints on � such that
each entry ��i

∈ � is comprised in a range between 0 and 1
and the sum of all weights equals 1. Formally

We aim to find the linear coefficient vector �∗ such that the
combined distance matrix D or the combined predictions P
lead to the best possible classification accuracy. We use two
different optimization strategies to find �∗.

The first optimization method consists of a search over
the parameter space in grid-search fashion. Unfortunately,
grid-search is not an efficient technique and scales poorly
when the search space is large. In our specific case the search
space has a size of O(Dn) , where D is the total number of

(3)D =

n∑

i

��i
D�i

,

(4)P =

n∑

i

��i
p�i

(5)

n∑

i=1

��i
= 1

and

��i
∈]0, 1[∀i = 1,… , n

values that a weight ��i
∈ � can take and n is the number of

graph subspaces that are potentially combined.
As a second optimization technique we use a genetic

algorithm (GA) [49]. GAs are more efficient and scalable
search procedures over large search spaces than grid search
approaches. Therefore, by means of GAs, we are able to
explore more subtle combinations of the weights and thus
potentially obtain better classification accuracies. Yet, the
optimality of the found solution is not guaranteed. It also
has the disadvantage to suffer from overfitting and there is
no well-defined regularization procedure to prevent it. In this
scenario, we define � as the so-called chromosome where
each entry ��i

∈ � represents a gene. We set the fitness func-
tion of a chromosome to be the classification accuracy of the
KNN and allow both operations mutations and cross-overs.

Experimental Evaluation

Data Sets

During the evaluation phase of our novel procedure, we use
six data sets from different domains. The AIDS and Muta-
genicity data sets are retrieved from the IAM graph data-
base [50]2 and the four other data sets (i.e., NCI1, Proteins,
Enzymes, IMDB Binary) are retrieved from the TUDataset
graph repository [51]3 In Table 1, we show some statistical
properties for each graph data sets (the number of graphs,
the number of graphs per split used for training, validation
and testing, the number of classes, and the average number
of nodes and edges)

The first three data sets (AIDS, mutagenicity, and NCI1)
represent molecules stemming from two classes. The two
categories from the AIDS data set represent molecules that
may have an effect against the HI virus or not. The graphs

Table 1 Properties of the graph data sets

We show the number of graphs (|G|) with the size of the training,
validation and test set (tr, va, te), the number of classes (|Ω|) and the
average number of nodes and edges (∅|V| , ∅|E|) per data set

Data set |G| (tr, va, te) |Ω| ∅|V| ∅|E|

AIDS 2000 (250, 250, 1500) 2 9.5 10.0
Mutagenicity 4337 (1,500, 500, 2337) 2 30.3 30.8
NCI1 4110 (1500, 500, 2110) 2 29.9 32.3
Proteins 1113 (660, 220, 223) 2 39.1 72.8
Enzymes 600 (360, 120, 120) 6 32.6 62.1
IMDB binary 1000 (600, 200, 200) 2 19.8 96.5

2 www. iam. unibe. ch/ fki/ datab ases/ iam- graph- datab ase.
3 http:// www. graph learn ing. io/.

http://www.iam.unibe.ch/fki/databases/iam-graph-database
http://www.graphlearning.io/

SN Computer Science (2023) 4:743 Page 7 of 15 743

SN Computer Science

from the mutagenicity data set represent molecules that may
have mutation properties, and the graphs in the NCI1 data
set represent molecules that are able (or not) to diminish
the expansion of tumorous cells. The graphs from the Pro-
teins data set correspond to proteins that are classified as
enzymes or non-enzymes. The Enzymes graphs represent
tertiary proteins stemming from six enzyme classes [3] The
IMDB-binary graphs encode social networks representing
movie collaborations between different actors/actresses.

We split all data sets into three disjoint subsets for train-
ing, validation, and testing as follows. We split the graphs
from the IAM graph repository according to the proposed
splitting of the benchmark. The NCI1 data set is split to
match the size of the three sets of the Mutagenicity data
set. The other data sets are divided with respect to the
60–20–20% split rule for training, validation, and test sets,
respectively.

Experimental Setup and Validation Process

The main purpose of the following experiments is to empiri-
cally verify whether or not the information extracted out of
the reduced graphs can help to improve the overall classifi-
cation performance. To test this hypothesis, we first build a
baseline for our evaluation by running a KNN classifier on
the original graphs.

The individual hyperparameters of the KNN are opti-
mized with the graphs contained in the validation set. To
alleviate overfitting during the optimization process, we
apply a fivefold cross-validation. The parameters to opti-
mize consist of � ∈]0, 1[that weights the relative influence
of node and edge edit operation costs and k ∈ {1, 3, 5} that
corresponds to the number of neighbors used by the KNN.

We show the optimal parameters � and k found for each
data set in Table 2.

For our novel framework, we use the optimized hyper-
parameters � and k computed during the optimization
phase on all graph subspaces G�1

,… ,G�n
 . We set the

reduction factors to � ∈ {1.0, 0.8, 0.6, 0.4, 0.2} to obtain the
original graph space and four reduced graph subspaces
with both PageRank and Betweenness. In our evaluation
the five graph (sub)spaces, reduced with PageRank and
Betweenness, are either used individually or combined
with each other. In the combined case, we obtain a total
of nine graph (sub)spaces (the original graph space and
four subspaces per centrality measure).

When optimizing the weighting parameters � with
grid search we use the five reduction levels presented
above in conjunction with 11 possible weighting factors,
i.e. ��i

∈ {1.0, 0.9,… , 0.1, 0.0} . Only with those reduc-
tion factors the search space is already quite large (hav-
ing 115 = 161, 051 different possibilities). Because of the
exponential growth of the search space we cannot apply
the grid-search procedure in the scenario where we com-
bine PageRank and Betweenness graph subspaces (in this
case the search space would have a size of 119 ≈ 2.9 billion
possibilities which is no longer feasible).

For the GA optimization, we use a random initial popu-
lation of 30 individual chromosomes, where the random
weights of each chromosome (i.e., the genes) are defined
such that they sum up to one to match the weighting con-
straints. Furthermore, the crossover sites in each iteration
of the GA are randomly chosen, the mutation probability
pm is set to 0.1, and we run the GA for 100 iterations.

In Table 3 we summarize all the reduction, combina-
tion, and optimization methods discussed above. We are
now able to combine all the presented methods with each
other. For instance, we can create a system termed PR-
CoD-GS that associates PageRank with the combination
of distances and a grid search optimization. As stated
above, the grid search optimization is not applicable to
the combined reduction, leading to a total of ten different
experimental setups.

In Fig. 3, we show a bar plot that displays the individual
weights �∗ obtained after the optimization procedure. The
figure exhibits the influence of the individually reduced
subspaces for all conducted experiments.

Table 2 Optimal values for
� and k obtained during the
hyperparameter optimization on
the validation sets

Data set � k

AIDS 0.7 1
Mutagenicity 0.6 5
NCI1 0.7 5
Proteins 0.9 3
Enzymes 0.9 1
IMDB binary 0.9 5

Table 3 Different reduction,
combination, and optimization
methods to create ten
experimental setups

aDue to computational reasons this combined reduction is only optimized via GA

Reduction methods Combination methods Optimization methods

PageRank (PR) Combination of distances (CoD) Grid search (GS)
Betweenness (BW) Combination of predictions (CoP) Genetic algorithm (GA)
PageRank + betweenness (PR

+ BW)a

 SN Computer Science (2023) 4:743 743 Page 8 of 15

SN Computer Science

In some cases, we observe that the original graph sub-
space G�1.0

 dominates the other subspaces. This trend is par-
ticularly apparent, for instance, on the Enzymes and NCI1
data sets with BW-CoD-GS and BW-CoP-GS, respectively.
On the other hand, we can observe in some cases that the
reduced graph subspaces substantially contribute to the
combined distances and/or predictions. For instance, on the
Mutagenicity or Proteins data sets with BW-CoP-GS, the
original graph space is completely omitted or does not sub-
stantially influence the final classification.

Yet, in tendency, no clear pattern in the weighting fac-
tors is visible that could favor any of the graph subspaces.
Thus the optimal weighting parameters have to be found in
an empirical fashion. This observation may indicate that all
the reduced subspaces are somehow important and that the
optimal weighting depends on the actual application.4

Qualitative Analysis of the Reduced Graphs

In Figs. 4 and 5, we show examples of graph reductions with
PageRank and Betweenness at different reduction levels �
on two data sets.5

We observe noticeable differences between the two cen-
trality measures. When reducing the graphs based on the
PageRank selection method, we generally preserve the intra-
community nodes. That is, communities are kept together
while being separated from each other. Roughly speaking,
PageRank tends to produce reduced graphs with large num-
bers of connected components. This effect is particularly
apparent in Fig. 4.

On the other hand, by deleting nodes upon low between-
ness values, we keep the backbone structure of the graph.
That is, we observe that the main paths in the graph form
communities and are kept when discarding nodes from the
graph. Simultaneously, the external nodes from the commu-
nities are omitted. This effect is particularly visible in Fig. 5.

Fig. 3 Importance of the individual graph subspaces in the linear combination for all data sets as well as all reduction, combination and optimi-
zation methods

4 We also study the weighting factors of each graph subspace when
combining PageRank and Betweenness graph subspaces. Yet, no
clear trend appears in the visualization and thus we do not display
those results here.

5 On the other data sets similar observations can be made (see
Appendix A).

SN Computer Science (2023) 4:743 Page 9 of 15 743

SN Computer Science

Fig. 4 Reduced molecular compound from the enzyme data set

Fig. 5 Reduced molecular compound from the proteins data set

Table 4 Classification accuracy
[%] obtained on the test set with
linear combinations of reduced
graphs

We present the results obtained by a KNN for the baseline and our two combination methods that are com-
bination of distances (CoD) and combination of predictions (CoP). The best result per data set is shown in
boldface. (◦/⋅ : statistically significantly better/worse than the baseline on a 5% level using a Z-test)

Data set AIDS Mutagenicity NCI1 Proteins Enzymes IMDB-binary

Method
 Baseline KNN 98.53 71.33 70.33 73.82 41.67 66.00
 PR − CoD − GS 99.13◦ 71.84 72.09 73.39 45.83 64,50
 PR − CoD − GA 99.13◦ 72.66 73.22◦ 75.54 48.33◦ 66.00
 PR − CoP − GS 99.33◦ 72.32 70.52 73.82 41.67 70.00
 PR − CoP − GA 99.13◦ 71.84 70.52 76.39◦ 37.50⋅ 70.00
 BW − CoD − GS 98.07 71.25 71.28 69.52 46.67 64.00
 BW − CoD − GA 99.20◦ 72.53 71.56 75.53 49.18◦ 64.00
 BW − CoP − GS 98.07 71.29 70.52 76.82◦ 43.33 65.50
 BW − CoP − GA 99.20◦ 71.59 70.24 73.82 41.67 65.50
 PR + BW − CoD − GA 99.13◦ 72.66 71.89 75.54 48.33◦ 65.50
 PR + BW − CoP − GA 99.27◦ 71.72 69.38 77.25◦ 40.83 65.00

 SN Computer Science (2023) 4:743 743 Page 10 of 15

SN Computer Science

Results on the Test Sets

In Table 4, we present the classification accuracies obtained
on all test sets by our method that combines either the dis-
tances, termed combination of distance matrices (CoD), or
the predictions, termed combination of predictions (CoP).
Both combinations are either applied on PageRank (PR),
betweenness (BW), or PageRank and betweenness (PR +
BW) reduced graphs. Additionally, we present individual
results for both optimization strategies, viz. grid search (GS)
and genetic algorithm (GA) (note that for PR + BW only the
GA optimization is applied due to computational reasons).

We start our discussion with a focus on the Pagerank
reduced graphs. We observe that at least one of the proposed
combinations of distances or predictions of the reduced sub-
spaces improves the classification accuracy compared to the
baseline on all data sets. In 21 out of 24 comparisons our
novel approach achieves better results than the reference sys-
tem (6 of these improvements are statistically significant).
These significant improvements are observed on four dif-
ferent data sets. On the other hand we observe only three
deteriorations of which only one is significant. Last but not
least, we observe that on four data sets the combination of
PageRank reduced graphs achieves the overall best results
(shown in bold face). Two of these overall best results are
achieved with distance based and two with prediction based
combinations.

In the case of combinations of betweenness reduced
graphs, comparable, yet slightly worse, results as with the
PageRank reduction are obtained. That is, with Between-
ness we observe only in 13 out ouf 24 comparisons an
improvement over the reference system. On the Enzymes
data set, however, the classification accuracy is substantially
improved by about 8 percentage points when compared to
the baseline (from 41.67% to 49.18%).

When combining both PageRank and betweenness graph
subspaces, we observe eight improvements in total when
compared to the baseline. Three of these improvements are
statistically significant. Moreover, with this particular com-
bination we obtain overall best results on the Mutagenicity
and Proteins data sets.

To assess which reduction method (PR or BW) together
with which combination method (CoD or CoP), coupled
with which optimization procedure (GS or GA) performs the
best, we rank all methods per data set and sum up the ranks
per method. We can report two clear winners that achieve the
smallest sum of rank points, viz. PR-CoD-GA and PR+BW-
CoD-GA. It is remarkable that PageRank plays at least a role
in both winners and that both winners are based on the dis-
tance combination that is optimized via genetic algorithm.
At the opposite end of the ranking, we have BW-CoD-GS
and BW-CoP-GA.

Actually, if we consider each individual graph subspace
as an individual system, we obtain an ensemble of classifi-
ers. It is well-known that ensemble learners are more robust
to potential noise and offer better generalization power than
individual classifiers. As the proposed method exploits the
power of ensemble learners, this gives us a possible and
plausible explanation of the substantial improvement of the
novel method compared to the reference system.

In summary, we can report that the GA optimization
method achieves better results than the grid search, the com-
bination of distances performs better than the combination
of predictions, and PageRank works better than Betweenness
for building the reduced graph subspaces.

Time Analysis

The main drawback of our novel three-step method is the
extra computation time used to compute GED in the different

Fig. 6 Runtime of GED compu-
tation for each graph subspace
per data set

SN Computer Science (2023) 4:743 Page 11 of 15 743

SN Computer Science

graph subspaces. The computation of GED is actually the
bottleneck of our framework in terms of time complexity
(although using an O(n3) approximation algorithm where
n = |V|). Hence, we focus our runtime analysis on the sec-
ond step of our framework.

Based on the fact that the reduced graphs have by def-
inition fewer nodes, the run time of GED is supposed to
decrease the smaller the graph subspaces are. In Fig. 6, we
show the runtime of GED for each graph subspace per data
set. We observe that in 4 out of 6 data sets (i.e., AIDS, pro-
teins, enzymes, and IMDB-Binary) the execution time is
only about twice slower compared to the runtime of GED
computation on the original graphs. On the other two data
sets (Mutagenicity and NCI1) the run time is about three
times slower than the original system. Considering that our
combined systems are superior to the reference system, one
can certainly argue that the higher runtime is worth it in
any case.

Conclusion and Future Work

In the present paper, we propose a novel framework for
graph-based pattern recognition that combines extra infor-
mation gained from reduced graph subspaces. Roughly
speaking, the proposed method works in three subsequent
steps. In the first step, we produce multiple reduced graph
subspaces using graph reduction methods. The graph reduc-
tion consists of first evaluating the node importances by
means of PageRank or Betweenness and then removing
the least important ones. During the second step, we use
GED to compute the distances between the graphs in their
corresponding reduced graph subspaces. In the last step,
we linearly combine either the distances or the predictions
obtained in the differently reduced graph subspaces. The
linear coefficients for the combination are either optimized
by means of a grid search or a genetic algorithm.

We empirically validate the advantage of our novel
method by performing an evaluation on data sets from a
broad range of domains. In particular, we show that a KNN
classifier clearly benefits from the combination of the dis-
tances or predictions of reduced graphs. That is, on all data
sets the proposed algorithmic framework outperforms the
reference system by several percentage points. Comparing
the different subsystems with each other, we conclude that
the PageRank reduction in conjunction with the combina-
tion of distances optimized via genetic algorithm is a good
choice in general.

Regarding the importance of each graph subspace we
can conclude that all of them are somehow important. The
actual importance seems to depend on both the data set and
optimization process.

Clearly, the increase in computation time is the major
drawback of the proposed system. The runtime of our novel
framework is actually higher than that of the reference sys-
tem, but not five times higher, as one might have expected
at first glance. The reason for this is, of course, the dramatic
decrease of the runtime in strongly reduced graph subspaces.
Overall, we observe runtimes that are twice or at most three
times as high as those of the reference system. Consider-
ing the significantly improved classification accuracy, this
slowdown seems acceptable.

In future work, we plan to employ other reduction pro-
cesses in our framework. In particular, methods which
might produce reduced graphs that contain more relevant
information within its reduced structure. A learning-based
reduction method would be a good candidate, for instance.
Such a method might learn which node to delete to con-
serve as much information as possible in the structure of
the reduced graph. A learning-based method would possibly
be also advantageous regarding the runtime. Once trained,
such a system would allow our framework to scale to very
large graphs.

A complementary idea is to embed graphs (implicitly or
explicitly) into a vector space and then carry out the com-
bination of distances (e.g., by means of a kernel machine).
For instance, each (reduced) graph can be embedded into
a vector space using a specific kernel. Once the (reduced)
graphs are embedded, one could instantly apply the second
and third step our framework in the embedding space.

Another line of research includes to further investigate
the runtime of our framework when working with large
graphs (e.g., |V| > 1000). It would be particularly interest-
ing to measure the extra-time required for the computation
of GED in the individual graph subspaces. This evaluation
could give us insight on a general trend of the runtime by
showing the computational issues of GED on large graphs
and revealing the substantial reduction of the runtime in the
reduced graph subspaces.

Appendix A: Examples of Reduced Graph

See Figs. 7, 8, 9 and 10.

 SN Computer Science (2023) 4:743 743 Page 12 of 15

SN Computer Science

Fig. 7 Reduced molecular compound from the AIDS data set

Fig. 8 Reduced molecular compound from the mutagenicity data set

Fig. 9 Reduced molecular compound from the NCI1 data set

SN Computer Science (2023) 4:743 Page 13 of 15 743

SN Computer Science

Funding Open access funding provided by University of Bern. This
study was funded by the Swiss National Science Foundation (SNSF)
under Grant Nr. 200021_188496.

Data availability All the datasets used in the experimental evaluation
of this paper are freely available.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Foggia P, Percannella G, Vento M. Graph matching and learning
in pattern recognition in the last 10 years. Int J Pattern Recognit
Artif Intell. 2014. https:// doi. org/ 10. 1142/ S0218 00141 45000 13.

 2. Gaüzère B, Brun L, Villemin D. Two new graphs kernels in chem-
oinformatics. Pattern Recognit Lett. 2012;33(15):2038–47. https://
doi. org/ 10. 1016/j. patrec. 2012. 03. 020.

 3. Borgwardt KM, Ong CS, Schönauer S, Vishwanathan SVN, Smola
AJ, Kriegel H. Protein function prediction via graph kernels. In:
Proceedings 13th international conference on intelligent systems
for molecular biology 2005, Detroit, 25–29 June 2005. 2005. p.
47–56. https:// doi. org/ 10. 1093/ bioin forma tics/ bti10 07.

 4. Kostakis O. Classy: fast clustering streams of call-graphs. Data
Min Knowl Discov. 2014;28(5–6):1554–85. https:// doi. org/ 10.
1007/ s10618- 014- 0367-9.

 5. Newman MEJ. Networks: an introduction. Oxford: Oxford Uni-
versity Press; 2010. https:// doi. org/ 10. 1093/ ACPROF: OSO/ 97801
99206 650. 001. 0001.

 6. Vento M. A long trip in the charming world of graphs for pattern
recognition. Pattern Recognit. 2015;48(2):291–301. https:// doi.
org/ 10. 1016/j. patcog. 2014. 01. 002.

 7. Yang C, Feng Y, Li P, Shi Y, Han J. Meta-graph based HIN
spectral embedding: Methods, analyses, and insights. In: IEEE
international conference on data mining, ICDM 2018, Singapore,
November 17–20, 2018. 2018. p. 657–66. https:// doi. org/ 10. 1109/
ICDM. 2018. 00081.

 8. Qiu H, Hancock ER. Graph matching and clustering using spectral
partitions. Pattern Recognit. 2006;39(1):22–34. https:// doi. org/ 10.
1016/j. patcog. 2005. 06. 014.

 9. Kriege NM, Johansson FD, Morris C. A survey on graph ker-
nels. Appl Netw Sci. 2020;5(1):6. https:// doi. org/ 10. 1007/
s41109- 019- 0195-3.

 10. Nikolentzos G, Siglidis G, Vazirgiannis M. Graph kernels: a sur-
vey. J Artif Intell Res. 2021;72:943–1027. https:// doi. org/ 10. 1613/
jair.1. 13225.

 11. Riesen K, Bunke H. Graph classification and clustering based
on vector space embedding. Series in machine perception and
artificial intelligence, vol. 77. Singapore: World Scientific; 2010.
https:// doi. org/ 10. 1142/ 7731.

 12. Livi L, Rizzi A, Sadeghian A. Optimized dissimilarity space
embedding for labeled graphs. Inf Sci. 2014;266:47–64. https://
doi. org/ 10. 1016/j. ins. 2014. 01. 005.

 13. Wu Z, Pan S, Chen F, Long G, Zhang C, Yu PS. A comprehen-
sive survey on graph neural networks. IEEE Trans Neural Netw
Learn Syst. 2021;32(1):4–24. https:// doi. org/ 10. 1109/ TNNLS.
2020. 29783 86.

 14. Zhou J, Cui G, Hu S, Zhang Z, Yang C, Liu Z, Wang L, Li C, Sun
M. Graph neural networks: a review of methods and applications.
AI Open. 2020;1:57–81. https:// doi. org/ 10. 1016/j. aiopen. 2021. 01.
001.

 15. Bunke H, Allermann G. Inexact graph matching for structural pat-
tern recognition. Pattern Recognit Lett. 1983;1(4):245–53. https://
doi. org/ 10. 1016/ 0167- 8655(83) 90033-8.

Fig. 10 Reduced network from the IMDB data set

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1142/S0218001414500013
https://doi.org/10.1016/j.patrec.2012.03.020
https://doi.org/10.1016/j.patrec.2012.03.020
https://doi.org/10.1093/bioinformatics/bti1007
https://doi.org/10.1007/s10618-014-0367-9
https://doi.org/10.1007/s10618-014-0367-9
https://doi.org/10.1093/ACPROF:OSO/9780199206650.001.0001
https://doi.org/10.1093/ACPROF:OSO/9780199206650.001.0001
https://doi.org/10.1016/j.patcog.2014.01.002
https://doi.org/10.1016/j.patcog.2014.01.002
https://doi.org/10.1109/ICDM.2018.00081
https://doi.org/10.1109/ICDM.2018.00081
https://doi.org/10.1016/j.patcog.2005.06.014
https://doi.org/10.1016/j.patcog.2005.06.014
https://doi.org/10.1007/s41109-019-0195-3
https://doi.org/10.1007/s41109-019-0195-3
https://doi.org/10.1613/jair.1.13225
https://doi.org/10.1613/jair.1.13225
https://doi.org/10.1142/7731
https://doi.org/10.1016/j.ins.2014.01.005
https://doi.org/10.1016/j.ins.2014.01.005
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1016/0167-8655(83)90033-8
https://doi.org/10.1016/0167-8655(83)90033-8

 SN Computer Science (2023) 4:743 743 Page 14 of 15

SN Computer Science

 16. Sanfeliu A, Fu K. A distance measure between attributed rela-
tional graphs for pattern recognition. IEEE Trans Syst Man
Cybern. 1983;13(3):353–62. https:// doi. org/ 10. 1109/ TSMC. 1983.
63131 67.

 17. Maergner P, Pondenkandath V, Alberti M, Liwicki M, Riesen K,
Ingold R, Fischer A. Offline signature verification by combining
graph edit distance and triplet networks. In: Bai X, Hancock ER,
Ho TK, Wilson RC, Biggio B, Robles-Kelly A, editors. Structural,
syntactic, and statistical pattern recognition—joint IAPR interna-
tional workshop, S+SSPR 2018, Beijing, China, August 17–19,
2018, proceedings. Lecture notes in computer science, vol. 11004.
Berlin: Springer; 2018. p. 470–80. https:// doi. org/ 10. 1007/ 978-3-
319- 97785-0_ 45.

 18. Fuchs M, Riesen K. Matching of matching-graphs—a novel
approach for graph classification. In: 25th international conference
on pattern recognition, ICPR 2020, virtual event, Milan, January
10–15, 2021, IEEE; 2020. p. 6570–76. https:// doi. org/ 10. 1109/
ICPR4 8806. 2021. 94119 26.

 19. Gillioz A, Riesen K. Improving graph classification by means
of linear combinations of reduced graphs. In: Marsico MD, di
Baja GS, Fred ALN, editors. Proceedings of the 11th interna-
tional conference on pattern recognition applications and methods,
ICPRAM 2022, online streaming, February 3–5, 2022. Setubal:
SCITE Press; 2022. p. 17–23. https:// doi. org/ 10. 5220/ 00107 76900
003122.

 20. Riesen K, Fischer A, Bunke H. Approximation of graph edit dis-
tance by means of a utility matrix. In: Schwenker F, Abbas HM,
Gayar NE, Trentin E, editors. Artificial neural networks in pat-
tern recognition—7th IAPR TC3 workshop, ANNPR 2016, Ulm,
Germany, September 28–30, 2016, proceedings. Lecture notes in
computer science, vol. 9896. Berlin: Springer; 2016. p. 185–94.
https:// doi. org/ 10. 1007/ 978-3- 319- 46182-3_ 16.

 21. Brun L, Foggia P, Vento M. Trends in graph-based representa-
tions for pattern recognition. Pattern Recognit Lett. 2020;134:3–9.
https:// doi. org/ 10. 1016/j. patrec. 2018. 03. 016.

 22. Carletti V, Foggia P, Percannella G, Ritrovato P, Vento M. Two
parallel versions of VF3: performance analysis on a wide data-
base of graphs. Pattern Recognit Lett. 2021;146:150–7. https://
doi. org/ 10. 1016/j. patrec. 2021. 03. 018.

 23. Carletti V, Foggia P, Saggese A, Vento M. Challenging the
time complexity of exact subgraph isomorphism for huge and
dense graphs with VF3. IEEE Trans Pattern Anal Mach Intell.
2018;40(4):804–18. https:// doi. org/ 10. 1109/ TPAMI. 2017. 26969
40.

 24. Tsai W, Fu K. Error-correcting isomorphisms of attributed rela-
tional graphs for pattern analysis. IEEE Trans Syst Man Cybern.
1979;9(12):757–68. https:// doi. org/ 10. 1109/ TSMC. 1979. 43101
27.

 25. Santacruz P, Serratosa F. Error-tolerant graph matching in linear
computational cost using an initial small partial matching. Pat-
tern Recognit Lett. 2020;134:10–9. https:// doi. org/ 10. 1016/j.
patrec. 2018. 04. 003.

 26. Bougleux S, Brun L, Carletti V, Foggia P, Gaüzère B, Vento M.
Graph edit distance as a quadratic assignment problem. Pattern
Recognit Lett. 2017;87:38–46. https:// doi. org/ 10. 1016/j. patrec.
2016. 10. 001.

 27. Cortés X, Serratosa F. Learning graph-matching edit-costs
based on the optimality of the oracle’s node correspondences.
Pattern Recognit Lett. 2015;56:22–9. https:// doi. org/ 10. 1016/j.
patrec. 2015. 01. 009.

 28. Escolano F, Bonev B, Lozano MA. Information-geometric
graph indexing from bags of partial node coverages. In: Jiang
X, Ferrer M, Torsello A, editors. Graph-based representations
in pattern recognition—8th IAPR-TC-15 international work-
shop, GbRPR 2011, Münster, Germany, May 18–20, 2011.
Proceedings. Lecture notes in computer science, vol. 6658.

Berlin: Springer; 2011. p. 52–61. https:// doi. org/ 10. 1007/
978-3- 642- 20844-7_6.

 29. Kashima H, Tsuda K, Inokuchi A. Marginalized kernels between
labeled graphs. In: Fawcett T, Mishra N, editprs. Machine
learning, proceedings of the twentieth international conference
(ICML 2003), August 21–24, 2003, Washington, DC, AAAI
Press; 2003. p. 321–28. http:// www. aaai. org/ Libra ry/ ICML/
2003/ icml03- 044. php

 30. Escolano F, Hancock ER, Lozano MA, Curado M. The mutual
information between graphs. Pattern Recognit Lett. 2017;87:12–
9. https:// doi. org/ 10. 1016/j. patrec. 2016. 07. 012.

 31. Darwiche M, Conte D, Raveaux R, T’kindt V. Solving the graph
edit distance problem with variable partitioning local search. In:
Conte D, Ramel J, Foggia P, editors. Graph-based representa-
tions in pattern recognition—12th IAPR-TC-15 international
workshop, GbRPR 2019, Tours, June 19–21, 2019, Proceedings.
Lecture notes in computer science, vol 11510 (2019). p. 67–77.
https:// doi. org/ 10. 1007/ 978-3- 030- 20081-7_7.

 32. Dwivedi SP, Singh RS. Error-tolerant graph matching using
node contraction. Pattern Recognit Lett. 2018;116:58–64.
https:// doi. org/ 10. 1016/j. patrec. 2018. 09. 014.

 33. Lerouge J, Abu-Aisheh Z, Raveaux R, Héroux P, Adam S. New
binary linear programming formulation to compute the graph
edit distance. Pattern Recognit. 2017;72:254–65. https:// doi. org/
10. 1016/j. patcog. 2017. 07. 029.

 34. Riesen K, Bunke H. Approximate graph edit distance computa-
tion by means of bipartite graph matching. Image Vis Comput.
2009;27(7):950–9. https:// doi. org/ 10. 1016/j. imavis. 2008. 04.
004.

 35. Serratosa F. Fast computation of bipartite graph matching. Pattern
Recognit Lett. 2014;45:244–50. https:// doi. org/ 10. 1016/j. patrec.
2014. 04. 015.

 36. Abu-Aisheh Z, Raveaux R, Ramel J. Anytime graph matching.
Pattern Recognit Lett. 2016;84:215–24. https:// doi. org/ 10. 1016/j.
patrec. 2016. 10. 004.

 37. Jiang X, Bunke H. Optimal quadratic-time isomorphism of
ordered graphs. Pattern Recognit. 1999;32(7):1273–83. https://
doi. org/ 10. 1016/ S0031- 3203(98) 00145-9.

 38. Anari N, Vazirani VV. Planar graph perfect matching is in NC. J
ACM. 2020;67(4):21–12134. https:// doi. org/ 10. 1145/ 33975 04.

 39. Torsello A, Rowe DH, Pelillo M. Polynomial-time metrics
for attributed trees. IEEE Trans Pattern Anal Mach Intell.
2005;27(7):1087–99. https:// doi. org/ 10. 1109/ TPAMI. 2005. 146.

 40. Fankhauser S, Riesen K, Bunke H. Speeding up graph edit dis-
tance computation through fast bipartite matching. In: Jiang X,
Ferrer M, Torsello A, editors. Graph-based representations in
pattern recognition—8th IAPR-TC-15 international workshop,
GbRPR 2011, Münster, Germany, May 18–20, 2011. Proceedings.
Lecture notes in computer science, vol. 6658. Berlin: Springer;
2011. p. 102–11. https:// doi. org/ 10. 1007/ 978-3- 642- 20844-7_ 11.

 41. Riesen K, Fischer A, Bunke H. Improved graph edit distance
approximation with simulated annealing. In: Foggia P, Liu C,
Vento M, editors. Graph-based representations in pattern recog-
nition—11th IAPR-TC-15 international workshop, GbRPR 2017,
Anacapri, Italy, May 16–18, 2017, Proceedings. Lecture notes in
computer science, vol. 10310. 2017. p. 222–31. https:// doi. org/ 10.
1007/ 978-3- 319- 58961-9_ 20.

 42. Stauffer M, Tschachtli T, Fischer A, Riesen K. A survey on
applications of bipartite graph edit distance. In: Foggia P, Liu C,
Vento M, editors. Graph-based representations in pattern recog-
nition—11th IAPR-TC-15 international workshop, GbRPR 2017,
Anacapri, Italy, May 16–18, 2017, Proceedings. Lecture notes in
computer science, vol. 10310. 2017. p. 242–52. https:// doi. org/ 10.
1007/ 978-3- 319- 58961-9_ 22.

https://doi.org/10.1109/TSMC.1983.6313167
https://doi.org/10.1109/TSMC.1983.6313167
https://doi.org/10.1007/978-3-319-97785-0_45
https://doi.org/10.1007/978-3-319-97785-0_45
https://doi.org/10.1109/ICPR48806.2021.9411926
https://doi.org/10.1109/ICPR48806.2021.9411926
https://doi.org/10.5220/0010776900003122
https://doi.org/10.5220/0010776900003122
https://doi.org/10.1007/978-3-319-46182-3_16
https://doi.org/10.1016/j.patrec.2018.03.016
https://doi.org/10.1016/j.patrec.2021.03.018
https://doi.org/10.1016/j.patrec.2021.03.018
https://doi.org/10.1109/TPAMI.2017.2696940
https://doi.org/10.1109/TPAMI.2017.2696940
https://doi.org/10.1109/TSMC.1979.4310127
https://doi.org/10.1109/TSMC.1979.4310127
https://doi.org/10.1016/j.patrec.2018.04.003
https://doi.org/10.1016/j.patrec.2018.04.003
https://doi.org/10.1016/j.patrec.2016.10.001
https://doi.org/10.1016/j.patrec.2016.10.001
https://doi.org/10.1016/j.patrec.2015.01.009
https://doi.org/10.1016/j.patrec.2015.01.009
https://doi.org/10.1007/978-3-642-20844-7_6
https://doi.org/10.1007/978-3-642-20844-7_6
http://www.aaai.org/Library/ICML/2003/icml03-044.php
http://www.aaai.org/Library/ICML/2003/icml03-044.php
https://doi.org/10.1016/j.patrec.2016.07.012
https://doi.org/10.1007/978-3-030-20081-7_7
https://doi.org/10.1016/j.patrec.2018.09.014
https://doi.org/10.1016/j.patcog.2017.07.029
https://doi.org/10.1016/j.patcog.2017.07.029
https://doi.org/10.1016/j.imavis.2008.04.004
https://doi.org/10.1016/j.imavis.2008.04.004
https://doi.org/10.1016/j.patrec.2014.04.015
https://doi.org/10.1016/j.patrec.2014.04.015
https://doi.org/10.1016/j.patrec.2016.10.004
https://doi.org/10.1016/j.patrec.2016.10.004
https://doi.org/10.1016/S0031-3203(98)00145-9
https://doi.org/10.1016/S0031-3203(98)00145-9
https://doi.org/10.1145/3397504
https://doi.org/10.1109/TPAMI.2005.146
https://doi.org/10.1007/978-3-642-20844-7_11
https://doi.org/10.1007/978-3-319-58961-9_20
https://doi.org/10.1007/978-3-319-58961-9_20
https://doi.org/10.1007/978-3-319-58961-9_22
https://doi.org/10.1007/978-3-319-58961-9_22

SN Computer Science (2023) 4:743 Page 15 of 15 743

SN Computer Science

 43. Riba P, Lladós J, Fornés A. Hierarchical graphs for coarse-to-fine
error tolerant matching. Pattern Recognit Lett. 2020;134:116–24.
https:// doi. org/ 10. 1016/j. patrec. 2019. 02. 001.

 44. Mousavi SF, Safayani M, Mirzaei A, Bahonar H. Hierarchical
graph embedding in vector space by graph pyramid. Pattern Rec-
ognit. 2017;61:245–54. https:// doi. org/ 10. 1016/j. patcog. 2016. 07.
043.

 45. Dutta A, Riba P, Lladós J, Fornés A. Hierarchical stochastic
graphlet embedding for graph-based pattern recognition. Neural
Comput Appl. 2020;32(15):11579–96. https:// doi. org/ 10. 1007/
s00521- 019- 04642-7.

 46. Brin S, Page L. The anatomy of a large-scale hypertextual web
search engine. Comput Netw. 1998;30(1–7):107–17. https:// doi.
org/ 10. 1016/ S0169- 7552(98) 00110-X.

 47. Freeman LC. A set of measures of centrality based on between-
ness. Sociometry. 1977;40:35–41. https:// doi. org/ 10. 2307/ 30335
43.

 48. Junior AU, Silveira RA, de Freitas Filho PJ, Uzinski JC, da
Costa Bianchi RA. MASDES-DWMV: model for dynamic ensem-
ble selection based on multiagent system and dynamic weighted
majority voting. In: Martínez-Villaseñor L, Herrera-Alcántara O,
Ponce HE, Castro-Espinoza F, editors. Advances in computational
intelligence—19th Mexican international conference on artificial
intelligence, MICAI 2020, Mexico City, Mexico, October 12–17,

2020, Proceedings, Part II. Lecture notes in computer science,
vol. 12469. 2020. p. 419–34. https:// doi. org/ 10. 1007/ 978-3- 030-
60887-3_ 36.

 49. Eiben AE, Smith JE. Introduction to evolutionary computing,
natural computing series. 2nd ed. Berlin: Springer; 2015. https://
doi. org/ 10. 1007/ 978-3- 662- 44874-8.

 50. Riesen K, Bunke H. IAM graph database repository for graph
based pattern recognition and machine learning. In: da Vitoria
Lobo N, Kasparis T, Roli F, Kwok JT, Georgiopoulos M, Anag-
nostopoulos GC, Loog M, editors. Structural, syntactic, and sta-
tistical pattern recognition, Joint IAPR international workshop,
SSPR & SPR 2008, Orlando, USA, December 4–6, 2008. Pro-
ceedings. Lecture notes in computer science, vol. 5342. Berlin:
Springer; 2008. p. 287–97. https:// doi. org/ 10. 1007/ 978-3- 540-
89689-0_ 33.

 51. Morris C, Kriege NM, Bause F, Kersting K, Mutzel P, Neumann
M. Tudataset: a collection of benchmark datasets for learning with
graphs. 2020. arXiv: 2007. 08663 [CoRR]

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.patrec.2019.02.001
https://doi.org/10.1016/j.patcog.2016.07.043
https://doi.org/10.1016/j.patcog.2016.07.043
https://doi.org/10.1007/s00521-019-04642-7
https://doi.org/10.1007/s00521-019-04642-7
https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.2307/3033543
https://doi.org/10.2307/3033543
https://doi.org/10.1007/978-3-030-60887-3_36
https://doi.org/10.1007/978-3-030-60887-3_36
https://doi.org/10.1007/978-3-662-44874-8
https://doi.org/10.1007/978-3-662-44874-8
https://doi.org/10.1007/978-3-540-89689-0_33
https://doi.org/10.1007/978-3-540-89689-0_33
http://arxiv.org/abs/2007.08663

	Building Multiple Classifier Systems Using Linear Combinations of Reduced Graphs
	Abstract
	Introduction
	Graph Matching
	Graph Structure
	Graph Matching Methods
	Graph Edit Distance

	Multiple Classifier System Based on Reduced Graphs
	Graph Reduction
	Graph Matching in Reduced Graph Spaces
	Building a Multiple Classifier System

	Experimental Evaluation
	Data Sets
	Experimental Setup and Validation Process
	Qualitative Analysis of the Reduced Graphs
	Results on the Test Sets
	Time Analysis

	Conclusion and Future Work
	Appendix A: Examples of Reduced Graph
	References

