2 research outputs found

    Software Evolution Understanding: Automatic Extraction of Software Identifiers Map for Object-Oriented Software Systems

    Get PDF
    Software companies usually develop a set of product variants within the same family that share certain functions and differ in others. Variations across software variants occur to meet different customer requirements. Thus, software product variants evolve overtime to cope with new requirements. A software engineer who deals with this family may find it difficult to understand the evolution scenarios that have taken place over time. In addition, software identifier names are important resources to understand the evolution scenarios in this family. This paper introduces an automatic approach called Juana’s approach to detect the evolution scenario across two product variants at the source code level and identifies the common and unique software identifier names across software variants source code. Juana’s approach refers to common and unique identifier names as a software identifiers map and computes it by comparing software variants to each other. Juana considers all software identifier names such as package, class, attribute, and method. The novelty of this approach is that it exploits common and unique identifier names across the source code of software variants, to understand the evolution scenarios across software family in an efficient way. For validity, Juana was applied on ArgoUML and Mobile Media software variants. The results of this evaluation validate the relevance and the performance of the approach as all evolution scenarios were correctly detected via a software identifiers map

    Supporting the grow-and-prune model for evolving software product lines

    Get PDF
    207 p.Software Product Lines (SPLs) aim at supporting the development of a whole family of software products through a systematic reuse of shared assets. To this end, SPL development is separated into two interrelated processes: (1) domain engineering (DE), where the scope and variability of the system is defined and reusable core-assets are developed; and (2) application engineering (AE), where products are derived by selecting core assets and resolving variability. Evolution in SPLs is considered to be more challenging than in traditional systems, as both core-assets and products need to co-evolve. The so-called grow-and-prune model has proven great flexibility to incrementally evolve an SPL by letting the products grow, and later prune the product functionalities deemed useful by refactoring and merging them back to the reusable SPL core-asset base. This Thesis aims at supporting the grow-and-prune model as for initiating and enacting the pruning. Initiating the pruning requires SPL engineers to conduct customization analysis, i.e. analyzing how products have changed the core-assets. Customization analysis aims at identifying interesting product customizations to be ported to the core-asset base. However, existing tools do not fulfill engineers needs to conduct this practice. To address this issue, this Thesis elaborates on the SPL engineers' needs when conducting customization analysis, and proposes a data-warehouse approach to help SPL engineers on the analysis. Once the interesting customizations have been identified, the pruning needs to be enacted. This means that product code needs to be ported to the core-asset realm, while products are upgraded with newer functionalities and bug-fixes available in newer core-asset releases. Herein, synchronizing both parties through sync paths is required. However, the state of-the-art tools are not tailored to SPL sync paths, and this hinders synchronizing core-assets and products. To address this issue, this Thesis proposes to leverage existing Version Control Systems (i.e. git/Github) to provide sync operations as first-class construct
    corecore