

Abstract—Software companies usually develop a set of product

variants within the same family that share certain functions and

differ in others. Variations across software variants occur to meet

different customer requirements. Thus, software product variants

evolve overtime to cope with new requirements. A software

engineer who deals with this family may find it difficult to

understand the evolution scenarios that have taken place over

time. In addition, software identifier names are important

resources to understand the evolution scenarios in this family. This

paper introduces an automatic approach called Juana’s approach

to detect the evolution scenario across two product variants at the

source code level and identifies the common and unique software

identifier names across software variants source code. Juana’s

approach refers to common and unique identifier names as a

software identifiers map and computes it by comparing software

variants to each other. Juana considers all software identifier

names such as package, class, attribute, and method. The novelty

of this approach is that it exploits common and unique identifier

names across the source code of software variants, to understand

the evolution scenarios across software family in an efficient way.

For validity, Juana was applied on ArgoUML and Mobile Media

software variants. The results of this evaluation validate the

relevance and the performance of the approach as all evolution

scenarios were correctly detected via a software identifiers map.

Index Terms—Software engineering, software evolution,

software identifiers map, formal concept analysis, software

product variant.

I. INTRODUCTION

OFTWARE product variants often evolve from the initial

version [1]. Each variant meets specific requirements

defined by the customer. However, these software product

variants usually share some common code and differ in other

code [2]. When software product variants become numerous,

comparing the code of the initial and the latest version is a

Manuscript received June 18, 2020; revised January 13, 2021. Date of

publication February 12, 2021. Date of current version February 12, 2021. The

associate editor prof. Dinko Begušić has been coordinating the review of this

manuscript and approved it for publication.
Authors are with the Department of Computer Information Systems, Faculty

of IT at Mutah University, P.O. Box 7, Mutah 61710, Karak, Jordan (e-mails:

rafatalmsiedeen@mutah.edu.jo, ablasi1@mutah.edu.jo).
Digital Object Identifier (DOI): 10.24138/jcomss.v17i1.1093

solution to define the common and unique code for each variant

in order to understand software evolution [3].

In fact, to understand the evolution of variant code, the software

engineer asks important questions such as, why the code related

to version A is deleted and why the code related to version B is

added? Is it due to bug fixing, coping with changes or to

add/remove functionality? Comprehension of software

evolution scenarios requires an understanding of the existing

software products. Existing evidence shows that successful

coder uses software structure as well as software identifier

names to discover software product [42]. With as much costs,

effort, and time spent on understanding software evolution

scenarios, there is a serious need for automated tools to help

discover and comprehend today’s huge and complex software

variants evolution.

The main issue in software evolution analysis is the

identification of specific changes that happen across numerous

releases of a software product [35]. After the emergence of

Lehman’s laws of software evolution [43], it has been well

comprehended that software system has to be modified to

changing requirements and environments or it becomes

increasingly less helpful. Software changes are generally

known as an essential part of a software’s life cycle [44]. Thus,

recently numerous approaches have been developed to help

software developers in understanding evolution scenarios in

huge complex software products [1, 10, 13].

Software identifier names (e.g., packages, classes, attributes

and, methods) are important software understanding sources [4,

5]. Identifier names across product variants need to be studied

in order to understand the evolution scenarios in those variants.

The main purpose of this paper is to help software engineers to

compare the identifier names of two software product variants.

This comparison aims to understand the evolution scenarios

between these versions through source code changes. However,

software engineer detects common and unique identifier names

across software variants via software identifiers map. In fact,

the main contribution of this research is to extract the identifiers

map for two similar versions of the software product.

The identifiers map defines the names of the common

Software Evolution Understanding: Automatic

Extraction of Software Identifiers Map for

Object-Oriented Software Systems

Ra’Fat AL-msie’deen, and Anas H. Blasi

S

20 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 17, NO. 1, MARCH 2021

1845-6421/03/1093 © 2021 CCIS

mailto:rafatalmsiedeen@mutah.edu.jo
mailto:ablasi1@mutah.edu.jo
FESB
Typewritten Text
Original scientific article

FESB
Typewritten Text

identifiers for both versions, as well as the names of the unique

identifiers for each software product.

Juana’s approach identifies the common and unique

software identifier names between two Object-Oriented (OO)

software variants. The common software identifiers are present

in two software variants. Furthermore, the unique software

identifiers have presented in one software variant, while absent

in another one. Juana computes common and unique software

identifier names by comparing software variants to each other.

However, the final result of Juana is the software identifiers

map, which is a visual presentation of software variant identifier

names, presented the common and unique identifier names

between two product variants.

The novelty of Juana is that it exploits all software identifier

names of product variants to identify the common and unique

identifier names across those variants. Juana separates the

identifiers of two product variants into two subsets, the common

identifiers set, and the unique identifiers set. Indeed, common

identifier names appear in all variants, while the unique

identifier names appear in one variant but not all variants.

Manual reverse engineering of common and unique identifier

names for software product variants is a tedious process, time-

consuming, and needs large efforts. Supporting this process

would be of great aid. This study suggests an automatic

approach to extract evolution scenarios from two product

variants. Juana is based on the identification of the

implementation of this evolution scenario among identifier

names of the source code. These identifier names form the

initial search space. Juana uses Formal Concept Analysis (FCA)

to reduce this search space. FCA divides the set of identifier

names into two subsets, the common identifier names set, and

the unique identifier names set. Then, it separates unique

identifier names set into small subsets that each contain

identifier names that are held uniquely by a certain software

variant.

Juana is detailed in this paper as follows: Section II discusses

all related work to Juana’s contribution. Section III gives an

overview of Juana. Section IV illustrates the software

identifiers map extraction process in detail. Section V presents

the experiments that were conducted to validate Juana’s

proposal. Finally, section VI presents a conclusion and provides

a future work.

II. RELATED WORK AND COMPARISON WITH JUANA

This section presents the related work to Juana’s

contributions. Also, it offers a brief overview of the different

approaches and shows the need to propose Juana.

By going through software evolution literature review, it has

been found that there is limited related work to the software

evolution using software identifier names. In fact, some

researchers were used FCA to study the variability across

product variants, and others were compared the whole code of

two products to extract unique feature implementations.

Al-Msie'deen et al. [12, 48] used FCA as part of their

automatic feature model extraction technique. In their work,

1 https://www.ifi.uzh.ch/en/seal/research/tools/changeDistiller.html

FCA was used to identify the common source code block and

variable code blocks (i.e., variability) across a collection of OO

software product variants. In fact, Juana deals only with two OO

software variants and identifies common and unique software

identifier names (i.e., identifiers map).

Rubin and Chechik [13] proposed in their paper an approach

to locating distinguishing features of two software variants

developed via code cloning. Their approach identified

distinguishing features – those are presented in one software but

not all software variants. Thus, the unique features are

implemented in the unshared parts of the software code. Juana

finds unique and common software identifier names across two

software variants.

Fluri et al. [35] presented a change distilling tool called

CHANGEDISTILLER1, a tree differencing procedure for fine-

grained code change detection. CHANGEDISTILLER tool

identifies fine-grained code changes among subsequent releases

of software classes, based on calculating variances of their

abstract syntax trees. As a result, software engineers obtained a

set of elements that are new or changed in product P2, compared

to product P1.

Source code variation has proven itself to be a continuing

research issue essential to product variants analysis [36].

Raghavan et al. presented Dex [37], a tool for mining code

variations among C source files. When software variants

evolved over time, its UML models also are evolving. Kelter et

al. identified differences between UML models [38]. Sager et

al. [39] presented an approach to extract similarities across

different software classes based on abstract syntax trees.

Kuhn [40] introduced a lexical approach to automatically

recover labels from software components. His approach can be

applied to compare software component terms with each other

in order to understand components evolution. An approach was

presented Anslow et. al. [41] to show the evolution of words in

class names in Java release 1.1 and release 1.6. The authors

showed the evolution history in a combined word cloud that

holds terms from both versions of software systems. The cloud

displays a comparison of the class names among Java version

1.1 (red color) and version 1.6 (blue color). Release 1.1 consists

of 477 classes and release 1.6 consists of 3777 classes. A word

cloud is an inspiring visualization method as it displays how the

words used in software class names have changed among

different releases of software variants. Word cloud shows that

all of the words used in release 1.1 have also been used in

release 1.6. There are a number of extra words used in release

1.6 which is to be predictable being a more recent release.

Al-Msie’deen and Blasi [1] proposed an automatic approach

called (Iris) to study the software when it evolves over time, its

code remains to grow, change and become extra complex. The

novelty of their approach is the exploitation of the product

variants to examine the influence of software evolution on the

software metrics. Based on the mined software metrics, it has

been found that the approach hypothesis is confirmed by the

calculated metrics. Horwitz [45] presented an approach to

compute semantic and textual differences between two software

R. AL-MSIE’DEEN et al.: SOFTWARE EVOLUTION UNDERSTANDING 21

https://www.ifi.uzh.ch/en/seal/research/tools/changeDistiller.html

products. Baxter et al. [46] described a tool for code clone

detection. However, the code clone tool relies on the abstract

syntax tree.

Several studies [10, 14] were used the FCA technique to

study the variability across software family. However, FCA

used as a clustering technique to extract common parts and

unshared parts of the variant’s source code, but FCA is not

already used to provide a clear, simple, and accurate visual

presentation of the software identifier names for two software

variants as in Juana’s approach.

III. APPROACH OVERVIEW

This section presents the main concepts and hypotheses used

in Juana’s approach for extracting the software identifiers map

from software variants source code. In addition, this section

gives an overview of the software identifiers map extraction

process. It also describes the toy example that illustrates the

remaining of the paper.

The main goal of this research is to understand software

evolution across two software variants. The Successful software

variants may have been presented many years ago with a new

version released every year. Furthermore, the software product

is changed to reflect changing customer requirements over time.

For large and long-lifetime software systems that are developed

by a software company for customers, systems must evolve to

meet changing customer requirements [15]. However, it is

important to understand software evolution.

Juana is concerned with re-documenting software variants to

make them easier to comprehend and change. The variants are

documented through the map of identifiers extracted by Juana’s

approach. Juana extracts the software identifiers map of two OO

software product variants. So, the software identifiers map

shows the common and unique identifiers across product

variants. By browsing and exploring the identifiers map, the

programmer can see the changes in the code during the

evolution of the software. In addition, changes in the software

identifiers are clearly visible on the extracted map.

Fig. 1. The software identifiers map extraction process

2 https://sites.google.com/site/ralmsideen/tools

The software identifiers map extraction process takes the

variants’ source code as input. The first step of this process aims

to identify software identifiers based on the static code analysis.

Second, identifies the common and unique software identifiers

across two product variants based on FCA. Figure 1 shows the

software identifiers map extraction process. Juana relies on a

software identifiers map to determine the common and unique

identifier names.

As an illustrative example, this paper considers two variants

of the drawing shapes software family2 [1, 16]. The first version

of the drawing shapes software allows software engineers to

draw three different kinds of shapes (i.e., line, oval, and

rectangle). The second version allows engineers to draw three

different kinds of shapes (i.e., line, round rectangle, and 3D

rectangle). In fact, this toy example is used to better explain

some parts of this paper. Juana only uses the source code of

software variants as input but does not know the common and

unique software identifier names in advance.

Figure 2 shows the common and unique identifiers between two

product variants. Juana uses FCA as a clustering technique to

find the common and unique identifiers across two product

variants. The reason behind this choice is that the FCA

technique expresses the wanted map artifact. The reader who is

interested in FCA can find more information in many studies

[6-10]. Based on two OO software product variants, Juana

extracts all software identifiers based on the static code analysis

[11] as a first step. Then, Juana uses the FCA to identify the

common and unique identifier names (i.e., software identifiers

map) across software variants.

Fig. 2. The common and unique identifiers of two product variants

Juana identifies the common and unique identifier names

across two OO software variants. However, Juana introduces

the term of software identifiers map, which is an artifact

gathering and viewing the common and unique identifier names

across software variants. The main objective of Juana's

approach is to help the software engineers understand the

evolution that has occurred across product variants at the source

code level. In addition, Juana's approach is the only current

approach that studies evolution scenarios between two software

products by exploiting software identifier names.

IV. THE SOFTWARE IDENTIFIERS MAP EXTRACTION PROCESS

This section describes the software identifiers map extraction

process in detail. However, the suggested approach extracts

software identifiers map in two steps as detailed in the

22 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 17, NO. 1, MARCH 2021

https://sites.google.com/site/ralmsideen/tools

following section.

A. Extracting the Software Identifiers

The first step of the software identifiers map extraction

process aims to extract all software identifier names for product

variants. Juana static code parser extracts all software identifier

names from software variants source code. As inputs for this

step, Juana accepts only two software variants source code. The

outputs of this step are two code files. However, for each

software variant, there is a code file contains all software

identifier names (i.e., package, class, attribute, and method).

The extracted code stored as XML files and the extracted file

contains main OO identifiers in addition to main code relations

such as inheritance, method invocation, and attribute access.

B. Identifying the Common and Unique Identifier Names

The second step of the software identifiers map extraction

process is the identification of the common and unique

identifiers. The technique used to identify them depend on FCA

[17 - 20]. Initially, a formal context, where objects are software

product variants and attributes are software identifier names, is

extracted. The corresponding AOC-poset is then generated.

Table I shows the formal context for the drawing shapes

software variants.

TABLE I

THE FORMAL CONTEXT FOR THE DRAWING SHAPES SOFTWARE PRODUCT

VARIANTS

Drawing shapes

releases

M
y
R

o
u
n
d

R
ec

ta
n
g
le

M
y
L

in
e

D
ra

w
in

g
S

h
ap

es

P
ai

n
tJ

P
an

el

M
y

S
h

ap
e

M
y
R

ec
ta

n
g

le

M
y
3

D
R

ec
ta

n
g
le

M
y

O
v

al

Release 1 × × × × × ×

Release 2 × × × × × ×

Figure 3 shows the AOC-poset for the formal context of

Table I and represents the software identifiers map. In the

formal context, the product family appears as row labels, while

software identifiers appear as column labels. Furthermore, the

cross sign indicates that the corresponding product contains this

identifier name. The AOC-poset in Figure 3 shows three

concepts. Each concept in the AOC-poset consists of two parts:

the concept intent and the concept extent. However, the intent

of each concept represents software identifier names common

to two variants or unique for one product. For example, the

intent of the top concept (i.e., concept_2) contains software

identifiers that are common to two variants. The intents of all

remaining concepts (i.e., concept_0 and concept_1) are unique

software identifier names. For example, the intent of concept_1

is the unique identifiers for the second release of drawing

shapes software. On other hand, the extent of each of these

concepts is the product that has these identifiers in its code. For

instance, the extent of concept_0 is the first release of drawing

shapes software.

Based on the identifiers map (i.e., the AOC-poset), the

3 http://www.ic.unicamp.br/~tizzei/mobilemedia/

software engineer can browse the map from top to bottom to see

the common identifier names of the two programs as well as

their unique identifier names. This map helps software

developers understand the evolution of the program. The upper

concept contains common identifiers that have not changed

during the evolution of the program. While the rest of the

concepts show the changes that have occurred to the program's

identifiers during its evolution. Juana’s approach extracts five

types of maps, the extracted maps cover all software identifiers

(i.e., packages, classes, attributes, and methods). In addition,

Juana extracts a map containing all software identifiers (i.e.,

identifiers map). Figure 4 shows packages, classes, and

attributes map.

Fig. 3. The AOC-poset for the formal context of Table I

A quick look at the extracted maps shows that the packages

and attributes of the software have not changed during its

evolution, while there has been a change at the class level. In

addition, some classes in the first version were deleted during

the evolution of the program and other classes were added to

the new version. However, these changes indicate that the

program has evolved to meet the new requirements of the

customer. The methods and identifiers map of drawing shapes

variants are available on the Juana webpage [21].

The software identifiers map is very helpful for software

developers to understand software evolution across two product

variants at the source code level. Juana’s approach can be used

by software engineers when locating distinguishing identifiers

– those are present in one variant but not all variants of the

software family. Juana assumes that software variants are

developed by the clone-and-own approach (i.e., copy-paste-

modify) [12].

V. EXPERIMENT WORK

To validate the proposed approach, experiments ran on two

real case studies: the mobile media [22] and ArgoUML [23].

Mobile media3 software is a Java-based open-source

application that manipulates media on mobile devices.

ArgoUML4 is a Java-based open-source software. ArgoUML

tool includes support for all standard UML diagrams.

Table II summarizes the evolution scenarios in mobile media

and ArgoUML software variants. The advantage of mobile

4 https://sdqweb.ipd.kit.edu/wiki/SPLevo/Case_Studies/ArgoUML-SPL

R. AL-MSIE’DEEN et al.: SOFTWARE EVOLUTION UNDERSTANDING 23

http://www.ic.unicamp.br/~tizzei/mobilemedia/
https://sdqweb.ipd.kit.edu/wiki/SPLevo/Case_Studies/ArgoUML-SPL

Fig. 4. The packages, classes, and attributes map extracted from drawing

shapes variants

media and ArgoUML variants is that they are well documented.

Thus, the result of Juana's approach can be compared with the

evolution scenarios documented in several studies [22, 23].

TABLE II

SUMMARY OF EVOLUTION SCENARIOS IN MOBILE MEDIA AND ARGOUML

VARIANTS

Case study Release Release description

Mobile

media

1 The first release of mobile photo software
implements the core system "i.e., mobile photo

core".

2 The second release of mobile photo software

implements the exception handling "i.e.,
exception handling included".

ArgoUML 1 The first release of ArgoUML software supports

all standard UML diagrams except sequence
diagram "i.e., only sequence diagram disabled".

2 The second release of ArgoUML software

supports all standard UML diagrams except use

case diagram "i.e., only use-case diagram
disabled".

The different case studies show different sizes: ArgoUML

(large product variants), mobile media (medium product

variants), and drawing shapes (small product variants).

However, the different complexity levels display the scalability

of Juana to dealing with such product variants. ArgoUML and

mobile media software variants are presented in Table III

characterized by metrics LOC (Lines of Code), NoP (Number

of Packages), and NoC (Number of Classes).

TABLE III

ARGOUML AND MOBILE MEDIA SOFTWARE PRODUCT VARIANTS

Product

variants

Product Description LoC NoP NoC

ArgoUML Only sequence diagram disabled 114,969 86 1,608

Only use-case diagram disabled 117,636 87 1,625

Mobile

media

Mobile photo core 936 10 16

Exception handling included 1,213 15 25

The AOC-posets in Figure 5 shows the evolution scenarios in

mobile media at the package and class levels.

5 http://code.google.com/p/erca/

Fig. 5. The packages and classes map for mobile media software variants

Based on the mobile media documents, Juana detects the

evolution scenario at the source code level in two versions of

mobile media in an accurate manner. In Figure 5, the intent of

the most general concept (i.e., Concept_0) holds package and

class names that are common to all products. The intent of the

remaining concept (i.e., Concept_1) holds a set of package and

class names unique to one product. The extent of Concept_1 is

the product name holding these identifier names in its source

code.

Algorithms for building AOC-posets are presented in [24, 25]

and all AOC-posets in this paper built using eRCA5 tool [12,

26]. All mobile media maps are available on Juana webpage

[21]. Juana performed an evaluation of the execution time (in

24 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 17, NO. 1, MARCH 2021

http://code.google.com/p/erca/

milliseconds) of its algorithms using the mobile media and

ArgoUML software. Table IV presents the execution time for

each case study. In Juana’s approach, the identifier name is

mentioned once in the map and there is no repetition because

the goal is to discover the differences in the code level between

the two programs. Juana’s prototype, static code parser, and all

code maps are available on Juana webpage [21].

TABLE IV

EXECUTION TIME OF JUANA APPROACH ACROSS VARIOUS CASE STUDIES

Case study Map type Execution time (in ms)

Mobile media All identifiers map 1398

Packages map 1144

Classes map 1257

Methods map 1368

Attributes map 1330

ArgoUML All identifiers map 895092

Packages map 5033

Classes map 18569

Methods map 338196

Attributes map 29566

The AOC-poset in Figure 6 shows the evolution scenario in

the ArgoUML at the package level. The top concept of the

AOC-poset (i.e., Concept_2) presented in a simplified form

(i.e., too large). Based on the ArgoUML documents, Juana

identifies the common and unique software identifier names in

two versions of ArgoUML software in a precise manner. All

ArgoUML maps are available on Juana webpage [21]. The

selected case studies are used to assess many studies in the field

of software engineering. Also, the selected case studies are well

documented, and their evolution scenarios are available for

comparison to Juana’s results and validation of the approach.

Results show that Juana’s approach is able to identify

common and unique identifier names across two software

product variants. The software identifiers map is very useful to

detect the evolution scenarios at the source code level. The

generated maps can be used to improve existing feature location

techniques [27, 28, 31].

Results have found that Juana’s map showed different

evolution scenarios between two releases. First, the added

scenario, in this case, the software identifier name did not exist

in the initial version but exists in the current version. Second,

the removed scenario, where the software identifier name

existed in the initial version but does not exist in the current

version. In the case of an unchanged scenario, the software

identifier name exists in both releases and did not change [29].

Software identifiers are important resources to analyze software

systems [30]. Thus, a software identifiers map is extracted from

two versions of a software system. In addition, the software

identifiers map is important for software developers to

understand the evolution scenarios for legacy systems when the

software documents are missing. For example, based on the

identifiers map, some identifier names that existed in the first

release are deleted from the second version, and new identifier

names are added to the second version to fix bugs (e.g., mobile

media) or to add some functionalities (e.g., ArgoUML).

To evaluate the suggested approach, the author performs a

simple evaluation with ten Java developers as participants.

Upon starting the evaluation, each participant was asked to see

the identifiers map of ArgoUML and mobile media. Then, each

participant was asked if he/she was felt such graphs will be

helpful for them to understand what happens between two

releases. All participants were felt that the extracted map was

very important as the changes between the two versions were

very precise.

Fig. 6. The packages map for ArgoUML software variants

Juana’s approach has been evaluated by three metrics:

precision, recall, and F-Measure [19]. All metrics have values

between 0 and 1. Table V presented the evaluation metrics of

Juana’s approach.

TABLE V

EVALUATION METRICS: PRECISION, RECALL, AND F-MEASURE

Precision = |{relevant IN} ∩ {retrieved IN}| / |{retrieved IN}|

Recall = |{relevant IN} ∩ {retrieved IN}| / |{relevant IN}|

F−Measure = 2 × [(Precision × Recall) / (Precision + Recall)]

IN stands for identifier names

Results have shown that precision, recall, and F-Measure

value is one of all mined identifier maps thanks to our approach

that identifies common and unique identifier names by using

FCA. Thus, all identifier names of the retrieved map are

relevant, and all relevant identifier names are retrieved. Table

VI illustrates the obtained results of some identifier names from

case studies (i.e., package names). Since the extracted map

contains the same identifier names as in the original code, the

approach is accurate and only retrieves the identifier names as

they are in the software code.

Results have displayed that all evaluation metrics appear high

for the extracted identifiers map. This means that all extracted

identifier names on the map are correct and relevant. As

concepts of the AOC-posets are well-organized, the intent of

the top concept holds identifier names that are common to all

software variants. The intents of the two remaining concepts

R. AL-MSIE’DEEN et al.: SOFTWARE EVOLUTION UNDERSTANDING 25

hold sets of identifier names unique to one variant and

correspond to the implementation of one or more

functionalities. The extent of each of these concepts is the

product variant name containing these identifier names in its

source code (cf. Figure 6).

TABLE VI

PACKAGE NAMES MINED FROM CASE STUDIES

Case study * ** Evaluation metrics

Precision Recall F-Me.

ArgoUML 90 90 1 1 1

Mobile media 15 15 1 1 1

* The number of package names in product variants code

** The number of the package names on the map

Statistical information

ArgoUML

The common package names 83

The unique package names for "only use-case diagram disabled" 4

The unique package names for "Only sequence diagram disabled" 3

Total number of package names 90

Mobile media

The common package names 10

The unique package names for "Mobile photo core" 0

The unique package names for "Exception handling included" 5

Total number of package names 15

The AOC-poset in Figure 7 displays the evolution scenario in

the ArgoUML at the class level. Also, the top concept of the

AOC-poset (i.e., Concept_2) offered in a simplified form (i.e.,

too large). The extracted identifiers map precisely shows the

differences at the code level among software product variants.

Results have shown that the identifiers map displays all the

names of the identifiers that are in the original code of the

software products. Thus, Juana helps software engineers

understand the evolution scenarios across software systems.

The threat to the validity of Juana is that software engineers

might not use the same vocabularies to name software

identifiers across software variants. As an example, product A

contains "salary" and "income" classes, while product B

contains "employeeSalary" and "tax" classes. In this case,

“salary” and “employeeSalary” are different names for the same

software class. Thus, Juana might not be reliable (or should be

improved with other techniques) in all cases to detect evolution

scenarios across product variants. Also, Juana considers only

the Java software systems. Thus, the prototype works only with

Java software systems.

VI. CONCLUSION AND FUTURE WORK

This paper focused on detecting common and unique software

identifier names of software product variants realized via code

cloning. Juana’s approach aimed to find those identifier names

that are present in one variant of the software and absent in

another. The software family is usually well documented but

detecting the common and unique identifier names in a given

software variant still a challenging task and imprecise in many

cases. In this paper, Juana’s approach was based on FCA to

identify the common and unique identifiers from the OO source

code of two software product variants. In fact, developers can

use this approach to understand the changes that have occurred

during program evolution. The novelty of Juana is the

exploiting of software identifier names to understand the

software evolution scenarios across the product family. The

proposed approach was applied to three case studies, and the

results proved the validity and accuracy in identifying the

changes that occurred during program evolution by comparing

the result of Juana with available documents for each case

study. For future work, Juana’s approach will be extended by

comparing more than two software variants to identify common

and unique software identifier names. Also, Juana’s approach

plans to apply the tag cloud visualization technique [32 – 34,

47] on common and unique identifier name blocks to present

the most frequent words in those blocks to software engineers.

Fig. 7. The class names map for ArgoUML software variants

REFERENCES

[1] R. Al-Msie’deen and Anas H. Blasi, “The impact of the object-oriented

software evolution on software metrics: The iris approach,” Indian Journal

of Science and Technology, vol. 11, no. 8, pp. 1–8, 2018, DOI:

10.17485/ijst/2018/v11i8/121148.

[2] R. Al-Msie’deen, A. Seriai, M. Huchard, C. Urtado, and S. Vauttier,

“Mining features from the object-oriented source code of software

variants by combining lexical and structural similarity,” in IEEE 14th
International Conference on Information Reuse & Integration, IRI 2013,

26 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 17, NO. 1, MARCH 2021

San Francisco, CA, USA, August 14-16, 2013. IEEE Computer Society,

2013, pp. 586–593, DOI: 10.1109/IRI.2013.6642522.

[3] D. Hearnden, P. A. Bailes, M. Lawley, and K. Raymond, “Automating

software evolution,” in 7th International Workshop on Principles of

Software Evolution (IWPSE 2004), 6-7 September 2004, Kyoto, Japan.
IEEE Computer Society, 2004, pp. 95–100, DOI:

10.1109/IWPSE.2004.1334773.

[4] P. Warintarawej, M. Huchard, M. Lafourcade, A. Laurent, and P.

Pompidor, “Software understanding: Automatic classification of software
identifiers,” Intelligent Data Analysis, vol. 19, no. 4, pp. 761–778, 2015,

DOI: 10.3233/IDA-150744.

[5] R. Al-Msie’deen, “Automatic labeling of the object-oriented source code:

The lotus approach,” Science International-Lahore ”Sci.Int.(Lahore)”,

vol. 30, no. 1, pp. 45–48, 2018.

[6] R. Al-Msie’deen, M. Huchard, A. Seriai, C. Urtado, and S. Vauttier,

“Reverse engineering feature models from software configurations using

formal concept analysis,” in Proceedings of the Eleventh International
Conference on Concept Lattices and Their Applications, Kosice,

Slovakia, October 7-10, 2014. CEUR-WS.org, 2014, pp. 95–106.

[7] M. Barbut and B. Monjardet, Ordre et classification: algebre et

combinatoire, ser. Classiques Hachette. Hachette, 1970.

[8] B. Ganter and R. Wille, Formal Concept Analysis: Mathematical
Foundation. Springer-Verlag New York Incorporated, 1999, DOI:

10.1007/978-3-642-59830-2.

[9] R. Al-Msie’deen, A. Seriai, M. Huchard, C. Urtado, S. Vauttier, and H. E.

Salman, “Mining features from the object-oriented source code of a
collection of software variants using formal concept analysis and latent

semantic indexing,” in The 25th International Conference on Software

Engineering and Knowledge Engineering, Boston, MA, USA, June 27-29,

2013. Knowledge Systems Institute Graduate School, 2013, pp. 244–249.

[10] R. Al-Msie’deen, A. Seriai, M. Huchard, C. Urtado, S. Vauttier, and H. E.

Salman, “Feature location in a collection of software product variants

using formal concept analysis,” in Safe and Secure Software Reuse - 13th
International Conference on Software Reuse, ICSR 2013, Pisa, Italy, June

18-20. Proceedings. Springer, 2013, pp. 302–307, DOI: 10.1007/978-3-

642-38977-1_22.

[11] R. Al-Msie’deen, “Visualizing object-oriented software for understanding
and documentation,” International Journal of Computer Science and

Information Security, vol. 13, no. 5, pp. 18–27, 2015.

[12] R. Al-Msie’deen, “Reverse engineering feature models from software
variants to build software product lines: REVPLINE approach,” Ph.D.

dissertation, Montpellier 2 University, France, 2014.

[13] J. Rubin and M. Chechik, “Locating distinguishing features using diff

sets,” in IEEE/ACM International Conference on Automated Software

Engineering, ASE’12, Essen, Germany, September 3-7, 2012. ACM,

2012, pp. 242–245, DOI: 10.1145/2351676.2351712.

[14] Y. Xue, Z. Xing, and S. Jarzabek, “Feature location in a collection of
product variants,” in 19th Working Conference on Reverse Engineering,

WCRE 2012, Kingston, ON, Canada, October 15-18, 2012. IEEE

Computer Society, 2012, pp. 145–154, DOI: 10.1109/WCRE.2012.24.

[15] I. Sommerville, Software engineering, 8th Edition, ser. International

computer science series. Addison-Wesley, 2007.

[16] R. Al-Msie’deen and Anas H. Blasi, “Supporting software documentation

with source code summarization,” International Journal of Advanced and

Applied Sciences, vol. 6, no. 1, pp. 59–67, 2019, DOI:

10.21833/ijaas.2019.01.008.

[17] R. Al-Msie’deen, M. Huchard, A. Seriai, C. Urtado, S. Vauttier, and A.

Al-Khlifat, “Concept lattices: A representation space to structure software

variability,” in 2014 5th International Conference on Information and
Communication Systems (ICICS). IEEE, April 2014, pp. 1–6, DOI:

10.1109/IACS.2014.6841949.

[18] R. Al-Msie’deen, A. Seriai, M. Huchard, C. Urtado, and S. Vauttier,

“Documenting the mined feature implementations from the object-
oriented source code of a collection of software product variants,” in The

26th International Conference on Software Engineering and Knowledge
Engineering, Hyatt Regency, Vancouver, BC, Canada, July 1-3, 2013.

Knowledge Systems Institute Graduate School, 2014, pp. 138–143.

[19] R. Al-Msie’deen, M. Huchard, A. Seriai, C. Urtado, and S. Vauttier,

“Automatic documentation of [mined] feature implementations from
source code elements and use-case diagrams with the REVPLINE

approach,” International Journal of Software Engineering and Knowledge

Engineering, vol. 24, no. 10, pp. 1413–1438, 2014, DOI:

10.1142/S0218194014400142.

[20] R. Al-Msie’deen, M. Huchard, and C. Urtado, Reverse Engineering

Feature Models. LAP LAMBERT Academic Publishing, 2014.

[21] R. Al-Msie’deen, “Juana webpage,” 2021. [Online]. Available:

https://sites.google.com/site/ralmsideen/tools

[22] L. P. Tizzei, M. O. Dias, C. M. F. Rubira, A. Garcia, and J. Lee,

“Components meet aspects: Assessing design stability of a software
product line,” Information & Software Technology, vol. 53, no. 2, pp.

121–136, 2011, DOI: 10.1016/j.infsof.2010.08.007.

[23] M. V. Couto, M. T. Valente, and E. Figueiredo, “Extracting software

product lines: A case study using conditional compilation,” in 15th
European Conference on Software Maintenance and Reengineering,

CSMR 2011, 1-4 March 2011, Oldenburg, Germany. IEEE Computer

Society, 2011, pp. 191–200, DOI: 10.1109/CSMR.2011.25.

[24] G. Arevalo, A. Berry, M. Huchard, G. Perrot, and A. Sigayret,
“Performances of galois sub-hierarchy-building algorithms,” in Formal

Concept Analysis, 5th International Conference, ICFCA 2007, Clermont-

Ferrand, France, February 12-16, 2007, Proceedings. Springer, 2007, pp.

166–180, DOI: 10.1007/978-3-540-70901-5_11.

[25] A. Berry, M. Huchard, A. Napoli, and A. Sigayret, “Hermes: an efficient

algorithm for building galois sub-hierarchies,” in Proceedings of The

Ninth International Conference on Concept Lattices and Their

Applications, Fuengirola (Malaga), Spain, October 11-14, 2012. CEUR-

WS.org, 2012, pp. 21–32.

[26] M. R. Hacene, M. Huchard, A. Napoli, and P. Valtchev, “Relational

concept analysis: mining concept lattices from multi-relational data,”

Annals of Mathematics and Artificial Intelligence, vol. 67, no. 1, pp. 81–

108, 2013, DOI: 10.1007/s10472-012-9329-3.

[27] J. Martinez, N. Ordonez, X. Ternava, T. Ziadi, J. Aponte, E. Figueiredo,

and M. T. Valente, “Feature location benchmark with argoUML SPL,” in

Proceedings of the 22nd International Systems and Software Product Line
Conference - Volume 1, SPLC 2018, Gothenburg, Sweden, September 10-

14, 2018. ACM, 2018, pp. 257–263, DOI: 10.1145/3233027.3236402.

[28] J. Rubin and M. Chechik, “A survey of feature location techniques,” in

Domain Engineering, Product Lines, Languages, and Conceptual Models.

Springer, 2013, pp. 29–58, DOI: 10.1007/978-3-642-36654-3_2.

[29] L. Steiger, “Recovering the evolution of object oriented software systems

using a flexible query engine,” Ph.D. dissertation, University of Bern,

Switzerland, 2001.

[30] E. Enslen, E. Hill, L. L. Pollock, and K. Vijay-Shanker, “Mining source
code to automatically split identifiers for software analysis,” in

Proceedings of the 6th International Working Conference on Mining

Software Repositories, MSR 2009 (Co-located with ICSE), Vancouver,
BC, Canada, May 16-17, 2009, Proceedings. IEEE Computer Society,

2009, pp. 71–80, DOI: 10.1109/MSR.2009.5069482.

[31] R. Al-Msie’deen, Feature Location in a Collection of Software Product

Variants. LAP LAMBERT Academic Publishing, 2014.

[32] R. Al-Msie’deen, “Tag Clouds for Object-Oriented Source Code
Visualization,” Engineering, Technology & Applied Science Research,

vol. 9, no. 3, pp. 4243-4248, 2019, DOI: 10.48084/etasr.2706.

[33] R. Al-Msie’deen, “Tag Clouds for Software Documents Visualization,”

International Journal on Informatics Visualization, vol. 3, no. 4, pp. 361–

364, 2019, DOI: 10.30630/joiv.3.4.285.

[34] R. Al-Msie’deen, “SoftCloud: A Tool for Visualizing Software Artifacts

as Tag Clouds,” Mu'tah Lil-Buhuth wad-Dirasat, Natural and Applied

Sciences Series, 2021. In Press.

[35] B. Fluri, M. Wuersch, M. Pinzger, and H. Gall. “Change Distilling: Tree
Differencing for Fine-Grained Source Code Change Extraction”. IEEE

TSE, vol. 33, no. 11, pp. 725–743, 2007, DOI: 10.1109/TSE.2007.70731.

[36] M. Kim and D. Notkin, “Program Element Matching for Multi-Version

Program Analyses,” Proc. Int’l Workshop on Mining Software

Repositories, pp. 58-64, 2006, DOI: 10.1145/1137983.1137999.

[37] S. Raghavan, R. Rohana, D. Leon, A. Podgurski, and V. Augustine, “Dex:

A Semantic-Graph Differencing Tool for Studying Changes in Large
Code Base,” Proc. Int’l Conf. Software Maintenance, pp. 188-197, 2004,

DOI: 10.1109/ICSM.2004.1357803.

[38] U. Kelter, J. Wehren, and J. Niere, “A Generic Difference Algorithm for

UML Models,” Software Engineering 2005, pp. 105-116, 2005.

[39] T. Sager, A. Bernstein, M. Pinzger, and C. Kiefer, “Detecting Similar Java
Classes Using Tree Algorithms,” Proc. Int’l Workshop on Mining

Software Repositories, pp. 65-71, 2006, DOI: 10.1145/1137983.1138000.

[40] A. Kuhn, “Automatic labeling of software components and their evolution

using log-likelihood ratio of word frequencies in source code,” 2009 6th
IEEE International Working Conference on Mining Software

R. AL-MSIE’DEEN et al.: SOFTWARE EVOLUTION UNDERSTANDING 27

https://sites.google.com/site/ralmsideen/tools

Repositories, pp. 175--178, IEEE, 2009, DOI: 10.1109/MSR.2009.

5069499.

[41] C. Anslow, J. Noble, S. Marshall, E. D. Tempero, “Visualizing the Word

Structure of Java Class Names,” in 23rd Annual ACM SIGPLAN

Conference on OOPSLA, pp. 777--778, ACM, 2008, DOI:

10.1145/1449814.1449857.

[42] E. Hill, L. Pollock, K. Vijay-Shanker, “Exploring the neighborhood with

Dora to expedite software maintenance,” in 22nd IEEE/ACM International

Conference on ASE, pp. 14--23, ACM, 2007, DOI: 10.1145/1321631.

1321637.

[43] M. M. Lehman, “Programs, life cycles and laws of software evolution,”

Proc. IEEE, pp. 1060-1076, Sept. 1980, DOI: 10.1109/PROC.1980.

11805.

[44] R. Al-Msie’deen, “Requirements specification of interactive multimedia

magazine for IT news in Jordan,” 2021, Unpublished/ in Press.

[45] S. Horwitz, “Identifying the semantic and textual differences between two

versions of a program,” Proc. ACM SIGPLAN Conf. Programming

Language Design and Implementation, pp. 234-245, June 1990, DOI:

10.1145/93542.93574.

[46] I. D. Baxter, A. Yahin, L.M. de Moura, M. Sant'Anna, and L. Bier, “Clone

detection using abstract syntax trees,” Proc. Int’l Conf. Software

Maintenance, pp. 368-377, Nov. 1998, DOI: 10.1109/ICSM.1998.

738528.

[47] R. Al-Msie’deen, Object-oriented Software Documentation. LAP

LAMBERT Academic Publishing, 2019.

[48] R. Al-Msie’deen, A. Seriai, and M. Huchard, Reengineering Software

Product Variants into Software Product Line: REVPLINE Approach.

LAP LAMBERT Academic Publishing, 2014.

Ra'Fat Al-Msie'Deen is an Associate Professor at
Mutah University since 2014. He received his PhD in

Software Engineering from the University of

Montpellier 2, Montpellier – France, in 2014. He
received his MSc in Information Technology from the

University Utara Malaysia, Kedah – Malaysia, in 2009.

He got his BSc in Computer Science from Al-Hussein
Bin Talal University, Ma'an – Jordan, in 2007. His

research interests include software engineering, software
product line engineering, and formal concept analysis.

Anas Blasi is an Associate professor in the CIS

department at Mutah University. He earned the MSc in

Computer Science from University of Sunderland
(England) in 2010, and the Ph.D. in Computer and

systems Science from the State University of New York

at Binghamton (USA) in 2013. Dr. Blasi research area is
focusing on AI, Data Mining, Data Science, Machine

Learning, Optimization algorithms, Fuzzy logic, and

EDM. He has published several papers in reputed journals and conferences.

28 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 17, NO. 1, MARCH 2021

